ArticleOriginal scientific text
Title
Each nowhere dense nonvoid closed set in Rn is a σ-limit set
Authors 1
Affiliations
- Institute of Mathematics, Ukrainian Academy of Sciences, Tereshchenkivs'ka 3, Kiev 252601, Ukraine
Abstract
We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in , n ≥ 1, is a σ-limit set for some continuous map.
Bibliography
- S. Agronsky, A. Bruckner, J. Ceder and T. Pearson, The structure of ω-limit sets for continuous functions, Real Anal. Exchange 15 (1989-90), 483-510.
- A. Bruckner and J. Smítal, The structure of ω-limit sets for continuous maps of the interval, Math. Bohem. 117 (1992), 42-47.
- H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, N.J., 1981.
- H. Hilmy, Sur les centres d'attraction minimaux dans les systèmes dynamiques, Compositio Math. 3 (1936), 227-238.
- N. Kryloff et N. Bogoliouboff [N. Krylov et N. Bogolyubov], La théorie générale de la mesure dans son application à l'étude des systèmes de la mécanique non linéaire, Ann. of Math. (2) 38 (1937), 65-113.
- V. V. Nemytskiĭ and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, N.J., 1960.
- A. N. Sharkovskiĭ, Attracting and attracted sets, Dokl. Akad. Nauk SSSR 160 (1965), 1036-1038 (in Russian); English transl.: Soviet Math. Dokl. 6 (1965), 268-270.
- A. G. Sivak, The structure of minimal attraction centers of trajectories of continuous maps of the interval, Real Anal. Exchange 20 (1994/95), 125-133.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm149/fm14927.pdf