ArticleOriginal scientific text

Title

Each nowhere dense nonvoid closed set in Rn is a σ-limit set

Authors 1

Affiliations

  1. Institute of Mathematics, Ukrainian Academy of Sciences, Tereshchenkivs'ka 3, Kiev 252601, Ukraine

Abstract

We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in n, n ≥ 1, is a σ-limit set for some continuous map.

Bibliography

  1. S. Agronsky, A. Bruckner, J. Ceder and T. Pearson, The structure of ω-limit sets for continuous functions, Real Anal. Exchange 15 (1989-90), 483-510.
  2. A. Bruckner and J. Smítal, The structure of ω-limit sets for continuous maps of the interval, Math. Bohem. 117 (1992), 42-47.
  3. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, N.J., 1981.
  4. H. Hilmy, Sur les centres d'attraction minimaux dans les systèmes dynamiques, Compositio Math. 3 (1936), 227-238.
  5. N. Kryloff et N. Bogoliouboff [N. Krylov et N. Bogolyubov], La théorie générale de la mesure dans son application à l'étude des systèmes de la mécanique non linéaire, Ann. of Math. (2) 38 (1937), 65-113.
  6. V. V. Nemytskiĭ and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, N.J., 1960.
  7. A. N. Sharkovskiĭ, Attracting and attracted sets, Dokl. Akad. Nauk SSSR 160 (1965), 1036-1038 (in Russian); English transl.: Soviet Math. Dokl. 6 (1965), 268-270.
  8. A. G. Sivak, The structure of minimal attraction centers of trajectories of continuous maps of the interval, Real Anal. Exchange 20 (1994/95), 125-133.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm149/fm14927.pdf

Pages:
183-190
Main language of publication
English
Received
1995-04-07
Accepted
1995-09-11
Published
1996
Exact and natural sciences