ArticleOriginal scientific text

Title

On the tameness of trivial extension algebras

Authors 1, 2

Affiliations

  1. Département de Mathématiques et Informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1
  2. Instituto de Matemáticas, Universidad Nacional, Autónoma de México, México 04510, D.F., México

Abstract

For a finite dimensional algebra A over an algebraically closed field, let T(A) denote the trivial extension of A by its minimal injective cogenerator bimodule. We prove that, if TA is a tilting module and B=EndTA, then T(A) is tame if and only if T(B) is tame.

Bibliography

  1. I. Assem, Tilting theory - an introduction, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 127-180.
  2. I. Assem, D. Happel and O. Roldán, Representation-finite trivial extension algebras, J. Pure Appl. Algebra 33 (1984), 235-242.
  3. I. Assem, J. Nehring and A. Skowroński, Domestic trivial extension of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72.
  4. M. Auslander and I. Reiten, Representation theory of artin algebras III, IV, Comm. Algebra 3 (1975), 239-294 and 5 (1977), 443-518.
  5. Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, Berlin, 1980, 240-258.
  6. R. M. Fossum, P. A. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Lecture Notes in Math. 456, Springer, Berlin, 1975.
  7. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (2) (1982), 399-443.
  8. D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), 347-364.
  9. R. Martínez-Villa, Properties that are left invariant under stable equivalence, Comm. Algebra 18 (12) (1990), 4141-4169.
  10. J. Nehring, Trywialne rozszerzenia wielomianowego wzrostu [Trivial extensions of polynomial growth], Ph.D. thesis, Nicholas Copernicus Univ., 1989 (in Polish).
  11. J. Nehring, Polynomial growth trivial extensions of non-simply connected algebras, Bull. Polish Acad. Sci. Math. 36 (1988), 441-445.
  12. J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134.
  13. J. A. de la Peña, Functors preserving tameness, ibid. 137 (1991), 177-185.
  14. J. A. de la Peña, Constructible functors and the notion of tameness, Comm. Algebra, to appear.
  15. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
  16. H. Tachikawa, Selfinjective algebras and tilting theory, in: Representation Theory I. Finite Dimensional Algebras, Lectures Notes in Math. 1177, Springer, Berlin, 1986, 272-307.
  17. H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm149/fm14926.pdf

Pages:
171-181
Main language of publication
English
Received
1995-02-27
Accepted
1995-09-21
Published
1996
Exact and natural sciences