ArticleOriginal scientific text

Title

On Auslander–Reiten components for quasitilted algebras

Authors 1, 2

Affiliations

  1. Department of Mathematics - IME, University of São Paulo, CP 20570, Cep 01452-990 Brasil
  2. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver ΓA of a quasitilted algebra A.

Bibliography

  1. I. Assem and F. U. Coelho, Glueings of tilted algebras, J. Pure Appl. Algebra 96 (1994), 225-243.
  2. M. Auslander and I. Reiten, Representation theory of artin algebras V, Comm. Algebra 5 (1977), 519-554.
  3. M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.
  4. R. Bautista and S. Smalø, Non-existent cycles, Comm. Algebra 11 (1983), 1755-1767.
  5. F. U. Coelho, Components of Auslander-Reiten quivers containing only preprojective modules, J. Algebra 157 (1993), 472-488.
  6. F. U. Coelho, A note on preinjective partial tilting modules, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1994, 109-115.
  7. F. U. Coelho, E. N. Marcos, H. A. Merklen and A. Skowroński, Domestic semiregular branch enlargements of tame concealed algebras, in: Representations of Algebras, ICRA VII, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press.
  8. V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976).
  9. D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterisation of Dynkin diagrams using subadditive functions with applications to DTr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 280-294.
  10. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
  11. D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., in press.
  12. O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47.
  13. O. Kerner, Stable components of wild tilted algebra, J. Algebra 142 (1991), 37-57.
  14. H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z., in press.
  15. H. Lenzing and J. A. de la Pe na, Algebras with a separating tubular family, preprint, 1995.
  16. S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416.
  17. S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J. Algebra 161 (1993), 505-523.
  18. C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255.
  19. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  20. C. M. Ringel, The regular components of the Auslander-Reiten quiver of a tilted algebra, Chinese Ann. Math. 9B (1988), 1-18.
  21. C. M. Ringel, The canonical algebras, in: Topics in Algebra, Banach Center Publ. 26, Part I, PWN, Warszawa, 1990, 407-432.
  22. A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120 (1994), 19-26.
  23. A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243.
  24. A. Skowroński, Cycle-finite algebras, J. Pure Appl. Algebra 103 (1995), 105-116.
  25. A. Skowroński, On omnipresent tubular families of modules, in: Representations of Algebras, ICRA, Cocoyoc (Mexico) 1994, CMS Conf. Proc., in press.
  26. A. Skowroński, Module categories with finite short cycles, in preparation.
  27. H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra 144 (1991), 43-66.
  28. Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652-672.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm149/fm14915.pdf

Pages:
67-82
Main language of publication
English
Received
1995-02-27
Accepted
1995-08-30
Published
1996
Exact and natural sciences