ArticleOriginal scientific text

Title

On the category of modules of second kind for Galois coverings

Authors 1

Affiliations

  1. Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

Let F: R → R/G be a Galois covering and mod1(RG) (resp. mod2(RG)) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories mod(RG)mod1(RG) and mod2(RG) is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.

Bibliography

  1. [AR] M. Auslander and I. Reiten, Representation theory of artin algebras IV, Comm. Algebra 5 (1977), 443-518.
  2. [BG] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378.
  3. [DS1] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529.
  4. [DS2] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
  5. [DLS] P. Dowbor, H. Lenzing and A. Skowroński, Galois coverings of algebras by locally support-finite categories, in: Proc. Ottawa 1984, Lecture Notes in Math. 1177, Springer, 1986, 91-93.
  6. [G] P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. Puebla 1980, Lecture Notes in Math. 903, Springer, 1981, 68-105.
  7. [Gr] E. L. Green, Group-graded algebras and the zero relation problem, ibid., 106-115.
  8. [L] S. Lang, Algebra, Addison-Wesley, 1970.
  9. [M] S. MacLane, Categories for the Working Mathematician, Springer, 1971.
  10. [P] Z. Pogorzały, Regularly biserial algebras, in: Topics in Algebra, Part 1, Banach Center Publ. 26, PWN, Warszawa, 1990, 371-384.
  11. [R] Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224.
  12. [S1] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-193.
  13. [S2] A. Skowroński, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci., to appear.
  14. [S3] A. Skowroński, Tame algebras with simply connected Galois coverings, preprint.
  15. [W] R. B. Warfield, Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1989), 460-465.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm149/fm14913.pdf

Pages:
31-54
Main language of publication
English
Received
1994-03-25
Accepted
1995-07-24
Published
1996
Exact and natural sciences