ArticleOriginal scientific text
Title
On the category of modules of second kind for Galois coverings
Authors 1
Affiliations
- Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Abstract
Let F: R → R/G be a Galois covering and (resp. ) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories and is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.
Bibliography
- [AR] M. Auslander and I. Reiten, Representation theory of artin algebras IV, Comm. Algebra 5 (1977), 443-518.
- [BG] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378.
- [DS1] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529.
- [DS2] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
- [DLS] P. Dowbor, H. Lenzing and A. Skowroński, Galois coverings of algebras by locally support-finite categories, in: Proc. Ottawa 1984, Lecture Notes in Math. 1177, Springer, 1986, 91-93.
- [G] P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. Puebla 1980, Lecture Notes in Math. 903, Springer, 1981, 68-105.
- [Gr] E. L. Green, Group-graded algebras and the zero relation problem, ibid., 106-115.
- [L] S. Lang, Algebra, Addison-Wesley, 1970.
- [M] S. MacLane, Categories for the Working Mathematician, Springer, 1971.
- [P] Z. Pogorzały, Regularly biserial algebras, in: Topics in Algebra, Part 1, Banach Center Publ. 26, PWN, Warszawa, 1990, 371-384.
- [R] Ch. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224.
- [S1] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-193.
- [S2] A. Skowroński, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci., to appear.
- [S3] A. Skowroński, Tame algebras with simply connected Galois coverings, preprint.
- [W] R. B. Warfield, Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1989), 460-465.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm149/fm14913.pdf