ArticleOriginal scientific text

Title

The relative coincidence Nielsen number

Authors 1

Affiliations

  1. Department of Mathematics, University of Agriculture, Nowoursynowska 166, 02-766 Warszawa, Poland

Abstract

We define a relative coincidence Nielsen number Nrel(f,g) for pairs of maps between manifolds, prove a Wecken type theorem for this invariant and give some formulae expressing Nrel(f,g) by the ordinary Nielsen numbers.

Bibliography

  1. [B] R. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., New York, 1971.
  2. [BS] R. Brown and H. Schirmer, Nielsen coincidence theory and coincidence-producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79.
  3. [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85.
  4. [Je1] J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212.
  5. [Je2] J. Jezierski, The semi-index product formula, ibid. 140 (1992), 99-120.
  6. [Je3] J. Jezierski, The coincidence Nielsen number for maps into real projective spaces, ibid. 140 (1992), 121-136.
  7. [Je4] J. Jezierski, The coincidence Nielsen theory on topological manifolds, ibid. 143 (1993), 167-178.
  8. [Je5] J. Jezierski, The Lefschetz coincidence number on non-orientable manifolds, submitted.
  9. [Ji] B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
  10. [S1] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39.
  11. [S2] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473.
  12. [Y] C. Y. You, Fixed points of a fibre map, ibid. 100 (1982), 217-241.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm149/fm14911.pdf

Pages:
1-18
Main language of publication
English
Received
1992-12-10
Accepted
1995-05-12
Published
1996
Exact and natural sciences