ArticleOriginal scientific text

Title

Product splittings for p-compact groups

Authors 1, 2

Affiliations

  1. University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
  2. Purdue University, West Lafayette, Indiana 47907, U.S.A.

Abstract

We show that a connected p-compact group with a trivial center is equivalent to a product of simple p-compact groups. More generally, we show that product splittings of any connected p-compact group correspond bijectively to algebraic splittings of the fundamental group of the maximal torus as a module over the Weyl group. These are analogues for p-compact groups of well-known theorems about compact Lie groups.

Bibliography

  1. A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133-150.
  2. A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer, Berlin, 1972.
  3. C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
  4. W. Dwyer, The centralizer decomposition of BG, preprint, Notre Dame, 1994.
  5. W. G. Dwyer and C. W. Wilkerson, Homotopy fixed point methods for Lie groups and finite loop spaces, Ann. of Math. 139 (1994), 395-442.
  6. W. G. Dwyer and C. W. Wilkerson, The center of a p-compact group, preprint, Notre Dame, 1993.
  7. J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. Inst. Hautes Études Sci. 75 (1992), 135-244.
  8. H. R. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120 (1984), 39-87.
  9. J. M. Moller, Rational isomorphisms of p-compact groups, preprint, Matematisk Institut, København, 1994.
  10. J. M. Moller and D. Notbohm, Centers and finite coverings of finite loop spaces, J. Reine Angew. Math., to appear.
  11. D. Notbohm, Unstable splittings of classifying spaces of p-compact groups, preprint, Univ. Göttingen, 1994.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm147/fm14735.pdf

Pages:
279-300
Main language of publication
English
Received
1994-08-25
Accepted
1994-12-20
Published
1995
Exact and natural sciences