Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The main result of the paper provides a method for construction of regular non-subadditive measures in compact Hausdorff spaces. This result is followed by several examples. In the last section it is shown that "discretization" of ordinary measures is possible in the following sense. Given a positive regular Borel measure λ, one may construct a sequence of non-subadditive measures $μ_n$, each of which only takes a finite set of values, and such that $μ_n$ converges to λ in the w*-topology.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
213-237
Opis fizyczny
Daty
wydano
1995
otrzymano
1994-01-28
poprawiono
1995-01-27
Twórcy
autor
- University of Trondheim, AVH, Department of Mathematics and Statistics, 7055 Dragvoll, Norway
Bibliografia
- [1] J. F. Aarnes, Quasi-states and quasi-measures, Adv. in Math. 86 (1991), 41-67.
- [2] J. F. Aarnes, Pure quasi-states and extremal quasi-measures, Math. Ann. 295 (1993), 575-588.
- [3] C. D. Christenson and W. L. Voxman, Aspects of Topology, Dekker, New York, 1977.
- [4] P. Halmos, Measure Theory, Van Nostrand, New York, 1950.
- [5] F. F. Knudsen, Topology and the construction of extreme quasi-measures, Adv. in Math., to appear.
- [6] H. L. Royden, Real Analysis, 2nd ed., Macmillan, New York, 1986.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv147i3p213bwm