ArticleOriginal scientific text

Title

Large families of dense pseudocompact subgroups of compact groups

Authors 1, 2

Affiliations

  1. Department of Mathematics, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, New York 11367, U.S.A.
  2. Department of Mathematics, Faculty of Science, Ehime University, Matsuyama 790, Japan

Abstract

We prove that every nonmetrizable compact connected Abelian group G has a family H of size |G|, the maximal size possible, consisting of proper dense pseudocompact subgroups of G such that H ∩ H'={0} for distinct H,H' ∈ H. An easy example shows that connectedness of G is essential in the above result. In the general case we establish that every nonmetrizable compact Abelian group G has a family H of size |G| consisting of proper dense pseudocompact subgroups of G such that each intersection H H' of different members of H is nowhere dense in G. Some results in the non-Abelian case are also given.

Bibliography

  1. S. Balcerzyk and J. Mycielski, On the existence of free subgroups of topological groups, Fund. Math. 44 (1957), 303-308.
  2. T. Bröcker and T. Dieck, Representations of Compact Lie Groups, Springer, Berlin, 1985.
  3. W. W. Comfort, Some questions and answers in topological groups, in: Memorias del Seminario Especial de Topologia, vol. 5, Javier Bracho and Carlos Prieto (eds.), Instituto de Matemat. del'UNAM, México, 1983, 131-149.
  4. W. W. Comfort, On the "fragmentation" of certain pseudocompact groups, Bull. Greek Math. Soc. 25 (1984), 1-13.
  5. W. W. Comfort, Topological groups, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 1143-1263.
  6. W. W. Comfort, Some progress and problems in topological groups, in: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth 1986 Prague Topological Symposium, Z. Frolík (ed.), Heldermann, Berlin, 1988, 95-108.
  7. W. W. Comfort and J. van Mill, Concerning connected pseudocompact Abelian groups, Topology Appl. 33 (1989), 21-45.
  8. W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer, Berlin, 1974.
  9. W. W. Comfort and L. C. Robertson, Extremal phenomena in certain classes of totally bounded groups, Dissertationes Math. 272 (1988).
  10. W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496.
  11. W. W. Comfort and T. Soundararajan, Pseudocompact group topologies and totally dense subgroups, ibid. 100 (1982), 61-84.
  12. D. Dikranjan, Zero-dimensionality of some pseudocompact groups, Proc. Amer. Math. Soc. 120 (1994), 1299-1308.
  13. R. Engelking, General Topology, Heldermann, Berlin, 1989.
  14. E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc. 64 (1948), 45-99.
  15. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. I, Springer, Berlin, 1963.
  16. G. L. Itzkowitz, Extensions of Haar measure for compact connected Abelian groups, Indag. Math. 27 (1965), 190-207.
  17. G. Itzkowitz and D. Shakhmatov, Almost disjoint, dense pseudocompact subgroups of compact Abelian groups, in: Abstracts of Eighth Summer Conf. on General Topology and Applications (Queens College, CUNY, June 18-20, 1992), p. 37.
  18. G. Itzkowitz and D. Shakhmatov, Dense countably compact subgroups of compact groups, Math. Japon., to appear.
  19. G. Itzkowitz and D. Shakhmatov, Haar nonmeasurable partitions of compact groups, submitted.
  20. J. Price, Lie Groups and Compact Groups, London Math. Soc. Lecture Note Ser. 25, Cambridge Univ. Press, Cambridge, 1977.
  21. M. Rajagopalan and H. Subrahmanian, Dense subgroups of locally compact groups, Colloq. Math. 35 (1976), 289-292.
  22. D. Remus, Minimal and precompact group topologies on free groups, J. Pure Appl. Algebra 70 (1991), 147-157.
  23. N. Th. Varopoulos, A theorem on the continuity of homomorphisms of locally compact groups, Proc. Cambridge Philos. Soc. 60 (1964), 449-463.
  24. H. Wilcox, Pseudocompact groups, Pacific J. Math. 19 (1966), 365-379.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm147/fm14731.pdf

Pages:
197-212
Main language of publication
English
Received
1992-12-16
Accepted
1993-11-23
Published
1995
Exact and natural sciences