PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 147 | 2 | 127-133
Tytuł artykułu

On finite-dimensional maps and other maps with "small" fibers

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that if f is a k-dimensional map on a compact metrizable space X then there exists a σ-compact (k-1)-dimensional subset A of X such that f|X∖A is 1-dimensional. Equivalently, there exists a map g of X in $I^k$ such that dim(f × g)=1. These are extensions of theorems by Toruńczyk and Pasynkov obtained under the additional assumption that f(X) is finite-dimensional.
 These results are then extended to maps with fibers restricted to some classes of spaces other than the class of k-dimensional spaces. For example: if f has weakly infinite-dimensional fibers then dim(f|X∖A) ≤ 1 for some σ-compact weakly infinite-dimensional subset A of X. The proof applies essentially the properties of hereditarily indecomposable continua.
Słowa kluczowe
Rocznik
Tom
147
Numer
2
Strony
127-133
Opis fizyczny
Daty
wydano
1995
otrzymano
1994-08-29
poprawiono
1994-12-12
Twórcy
Bibliografia
  • [B] R. H. Bing, Higher dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 653-663.
  • [D-R] T. Dobrowolski and L. Rubin, The hyperspaces of infinite dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 104 (1994), 15-39.
  • [K] K. Kuratowski, Topology II, PWN, Warszawa, 1968.
  • [Le] M. Levin, A short construction of hereditarily infinite dimensional compacta, Topology Appl., to appear.
  • [Pa] B. A. Pasynkov, On dimension and geometry of mappings, Dokl. Akad. Nauk SSSR 221 (1975), 543-546 (in Russian).
  • [Po] R. Pol, On light mappings without perfect fibers on compacta, preprint.
  • [T] H. Toruńczyk, Finite to one restrictions of continuous functions, Fund. Math. 75 (1985), 237-249.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv147i2p127bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.