ArticleOriginal scientific text

Title

Sierpiński's hierarchy and locally Lipschitz functions

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland

Abstract

Let Z be an uncountable Polish space. It is a classical result that if I ⊆ ℝ is any interval (proper or not), f: I → ℝ and α<ω1 then f ○ g ∈ Bα(Z) for every gBα(Z)ZI if and only if f is continuous on I, where Bα(Z) stands for the αth class in Baire's classification of Borel measurable functions. We shall prove that for the classes Sα(Z)(α>0) in Sierpiński's classification of Borel measurable functions the analogous result holds where the condition that f is continuous is replaced by the condition that f is locally Lipschitz on I (thus it holds for the class of differences of semicontinuous functions, which is the class S1(Z)). This theorem solves the problem raised by the work of Lindenbaum ([L] and [L, Corr.]) concerning the class of functions not leading outside Sα(Z) by outer superpositions.

Bibliography

  1. [CM1] J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83-89.
  2. [CM2] J. Cichoń and M. Morayne, An abstract version of Sierpiński's theorem and the algebra generated by A and CA functions, Fund. Math. 142 (1993), 263-268.
  3. [H] F. Hausdorff, Set Theory, Chelsea, New York, 1962.
  4. [Ke] S. Kempisty, Sur les séries itérées des fonctions continues, Fund. Math. 2 (1921), 64-73.
  5. [Ku] K. Kuratowski, Topology I, Academic Press, New York and London, 1966.
  6. [L] A. Lindenbaum, Sur les superpositions de fonctions représentables analytiquement, Fund. Math. 23 (1934), 15-37; Corrections, ibid., 304.
  7. [Mau] R. D. Mauldin, Baire functions, Borel sets, and ordinary function systems, Adv. in Math. 12 (1974), 418-450.
  8. [Maz] S. Mazurkiewicz, Sur les fonctions de classe 1, Fund. Math. 2 (1921), 28-36.
  9. [Mor] M. Morayne, Algebras of Borel measurable functions, ibid. 141 (1992), 229-242.
  10. [S1] W. Sierpiński, Sur les fonctions développables en séries absolument convergentes de fonctions continues, ibid. 2 (1921), 15-27.
  11. [S2] W. Sierpiński, Démonstration d'un théorème sur les fonctions de première classe, ibid. 2 (1921), 37-40.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm147/fm14716.pdf

Pages:
73-82
Main language of publication
English
Received
1994-04-12
Accepted
1994-09-28
Published
1995
Exact and natural sciences