ArticleOriginal scientific text
Title
Sierpiński's hierarchy and locally Lipschitz functions
Authors 1
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
Abstract
Let Z be an uncountable Polish space. It is a classical result that if I ⊆ ℝ is any interval (proper or not), f: I → ℝ and then f ○ g ∈ for every if and only if f is continuous on I, where stands for the αth class in Baire's classification of Borel measurable functions. We shall prove that for the classes in Sierpiński's classification of Borel measurable functions the analogous result holds where the condition that f is continuous is replaced by the condition that f is locally Lipschitz on I (thus it holds for the class of differences of semicontinuous functions, which is the class ). This theorem solves the problem raised by the work of Lindenbaum ([L] and [L, Corr.]) concerning the class of functions not leading outside by outer superpositions.
Bibliography
- [CM1] J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83-89.
- [CM2] J. Cichoń and M. Morayne, An abstract version of Sierpiński's theorem and the algebra generated by A and CA functions, Fund. Math. 142 (1993), 263-268.
- [H] F. Hausdorff, Set Theory, Chelsea, New York, 1962.
- [Ke] S. Kempisty, Sur les séries itérées des fonctions continues, Fund. Math. 2 (1921), 64-73.
- [Ku] K. Kuratowski, Topology I, Academic Press, New York and London, 1966.
- [L] A. Lindenbaum, Sur les superpositions de fonctions représentables analytiquement, Fund. Math. 23 (1934), 15-37; Corrections, ibid., 304.
- [Mau] R. D. Mauldin, Baire functions, Borel sets, and ordinary function systems, Adv. in Math. 12 (1974), 418-450.
- [Maz] S. Mazurkiewicz, Sur les fonctions de classe 1, Fund. Math. 2 (1921), 28-36.
- [Mor] M. Morayne, Algebras of Borel measurable functions, ibid. 141 (1992), 229-242.
- [S1] W. Sierpiński, Sur les fonctions développables en séries absolument convergentes de fonctions continues, ibid. 2 (1921), 15-27.
- [S2] W. Sierpiński, Démonstration d'un théorème sur les fonctions de première classe, ibid. 2 (1921), 37-40.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm147/fm14716.pdf