ArticleOriginal scientific text
Title
Measures on Corson compact spaces
Authors 1, 2
Affiliations
- Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
- Department of Mathematics, Vrije Universiteit, De Boelelaan 1081a, Postbus 7161, 1081 HV Amsterdam, The Netherlands
Abstract
We prove that the statement: "there is a Corson compact space with a non-separable Radon measure" is equivalent to a number of natural statements in set theory.
Bibliography
- J. Cichoń, A. Kamburelis and J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), 142-146.
- M. Džamonja and K. Kunen, Measures on compact HS spaces, Fund. Math. 143 (1993), 41-54.
- V. V. Fedorchuk, On the cardinality of hereditarily separable bicompacta, Dokl. Akad. Nauk SSSR 222 (1975), 302-305 (in Russian).
- D. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984.
- P. Halmos, Measure Theory, Van Nostrand, 1968.
- K. Kunen, A compact L-space under CH, Topology Appl. 12 (1981), 283-287.
- D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 108-111.
- R. D. Mauldin, The existence of non-measurable sets, Amer. Math. Monthly 86 (1979), 45-46.
- H. P. Rosenthal, On injective Banach spaces and the spaces
for finite measures μ, Acta Math. 124 (1970), 205-248.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm147/fm14715.pdf