ArticleOriginal scientific text

Title

Measures on Corson compact spaces

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
  2. Department of Mathematics, Vrije Universiteit, De Boelelaan 1081a, Postbus 7161, 1081 HV Amsterdam, The Netherlands

Abstract

We prove that the statement: "there is a Corson compact space with a non-separable Radon measure" is equivalent to a number of natural statements in set theory.

Bibliography

  1. J. Cichoń, A. Kamburelis and J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), 142-146.
  2. M. Džamonja and K. Kunen, Measures on compact HS spaces, Fund. Math. 143 (1993), 41-54.
  3. V. V. Fedorchuk, On the cardinality of hereditarily separable bicompacta, Dokl. Akad. Nauk SSSR 222 (1975), 302-305 (in Russian).
  4. D. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984.
  5. P. Halmos, Measure Theory, Van Nostrand, 1968.
  6. K. Kunen, A compact L-space under CH, Topology Appl. 12 (1981), 283-287.
  7. D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 108-111.
  8. R. D. Mauldin, The existence of non-measurable sets, Amer. Math. Monthly 86 (1979), 45-46.
  9. H. P. Rosenthal, On injective Banach spaces and the spaces L(μ) for finite measures μ, Acta Math. 124 (1970), 205-248.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm147/fm14715.pdf

Pages:
61-72
Main language of publication
English
Received
1994-03-29
Accepted
1994-10-31
Published
1995
Exact and natural sciences