ArticleOriginal scientific text
Title
The hyperspace of finite subsets of a stratifiable space
Authors 1, 2, 2
Affiliations
- Analyse Complexe et Géométrie, Université Paris VI, 4, Place Jussieu, 75252 Paris Cedex 05, France
- Institute of Mathematics, University of Tsukuba, Tsukuba 305, Japan
Abstract
It is shown that the hyperspace of non-empty finite subsets of a space X is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected (and connected) stratifiable space.
Keywords
hyperspace, the Vietoris topology, stratifiable space, AR(S), ANR(S), 2-hyper-locally-connected
Bibliography
- [Bo1] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
- [Bo2] C. R. Borges, A study of absolute extensor spaces, ibid. 31 (1969), 609-617; corrigenda, ibid. 50 (1974), 29-30.
- [Bo3] C. R. Borges, Connectivity of function spaces, Canad. J. Math. 23 (1971), 759-763.
- [Ca1] R. Cauty, Une généralisation du théorème de Borsuk-Whitehead-Hanner aux espaces stratifiables, C. R. Acad. Sci. Paris Sér. A 275 (1972), 271-275.
- [Ca2] R. Cauty, Produits symétriques de rétractes absolus de voisinage, ibid. 276 (1973), 359-361.
- [Ca3] R. Cauty, Rétractions dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129-149.
- [Ce] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-126.
- [CN] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to
-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260. - [Du] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 57 (1965), 187-193.
- [GS] B.-L. Guo and K. Sakai, Hyperspaces of CW-complexes, Fund. Math. 143 (1993), 23-40.
- [Ja] J. W. Jaworowski, Symmetric products of ANR's, Math. Ann. 192 (1971), 173-176.
- [Ke] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- [Mi] E. Michael, Topologies on spaces of subsets, ibid. 71 (1951), 152-182.
- [MK] T. Mizokami and T. Koiwa, On hyperspaces of compact and finite subsets, Bull. Joetsu Univ. Educ. 6 (1987), 1-14.
- [Ng] Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), 244-254.
- [Sa] S. San-ou, A note on Ξ-product, J. Math. Soc. Japan 29 (1977), 281-285.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm147/fm14711.pdf