ArticleOriginal scientific text

Title

The hyperspace of finite subsets of a stratifiable space

Authors 1, 2, 2

Affiliations

  1. Analyse Complexe et Géométrie, Université Paris VI, 4, Place Jussieu, 75252 Paris Cedex 05, France
  2. Institute of Mathematics, University of Tsukuba, Tsukuba 305, Japan

Abstract

It is shown that the hyperspace of non-empty finite subsets of a space X is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected (and connected) stratifiable space.

Keywords

hyperspace, the Vietoris topology, stratifiable space, AR(S), ANR(S), 2-hyper-locally-connected

Bibliography

  1. [Bo1] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
  2. [Bo2] C. R. Borges, A study of absolute extensor spaces, ibid. 31 (1969), 609-617; corrigenda, ibid. 50 (1974), 29-30.
  3. [Bo3] C. R. Borges, Connectivity of function spaces, Canad. J. Math. 23 (1971), 759-763.
  4. [Ca1] R. Cauty, Une généralisation du théorème de Borsuk-Whitehead-Hanner aux espaces stratifiables, C. R. Acad. Sci. Paris Sér. A 275 (1972), 271-275.
  5. [Ca2] R. Cauty, Produits symétriques de rétractes absolus de voisinage, ibid. 276 (1973), 359-361.
  6. [Ca3] R. Cauty, Rétractions dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129-149.
  7. [Ce] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-126.
  8. [CN] D. Curtis and Nguyen To Nhu, Hyperspaces of finite subsets which are homeomorphic to 0-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260.
  9. [Du] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 57 (1965), 187-193.
  10. [GS] B.-L. Guo and K. Sakai, Hyperspaces of CW-complexes, Fund. Math. 143 (1993), 23-40.
  11. [Ja] J. W. Jaworowski, Symmetric products of ANR's, Math. Ann. 192 (1971), 173-176.
  12. [Ke] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
  13. [Mi] E. Michael, Topologies on spaces of subsets, ibid. 71 (1951), 152-182.
  14. [MK] T. Mizokami and T. Koiwa, On hyperspaces of compact and finite subsets, Bull. Joetsu Univ. Educ. 6 (1987), 1-14.
  15. [Ng] Nguyen To Nhu, Investigating the ANR-property of metric spaces, Fund. Math. 124 (1984), 244-254.
  16. [Sa] S. San-ou, A note on Ξ-product, J. Math. Soc. Japan 29 (1977), 281-285.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm147/fm14711.pdf

Pages:
1-9
Main language of publication
English
Received
1993-11-07
Published
1995
Exact and natural sciences