ArticleOriginal scientific text

Title

Quasivarieties of pseudocomplemented semilattices

Authors 1, 2, 3, 4, 5

Affiliations

  1. Department of Mathematics, State University of New York, New Paltz, New York 12561, U.S.A.
  2. Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
  3. Department of Mathematics, University of Puerto Rico, Mayaguez, Puerto Rico 00681-5000, U.S.A.
  4. Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240, U.S.A.
  5. Institute of Mathematics, University of Bern, CH-3012 Bern, Switzerland

Abstract

Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are 2ω quasivarieties.

Bibliography

  1. M. E. Adams, Implicational classes of pseudocomplemented distributive lattices, J. London Math. Soc. 13 (1976), 381-384.
  2. M. E. Adams and W. Dziobiak, Q-universal quasivarieties of algebras, Proc. Amer. Math. Soc. 120 (1994), 1053-1059.
  3. M. E. Adams and W. Dziobiak, Lattices of quasivarieties of 3-element algebras, J. Algebra 166 (1994), 181-210.
  4. M. E. Adams and M. Gould, A construction for pseudocomplemented semilattices and two applications, Proc. Amer. Math. Soc. 106 (1989), 899-905.
  5. S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981.
  6. W. Dziobiak, On subquasivariety lattices of some varieties related with distributive p-algebras, Algebra Universalis 21 (1985), 62-67.
  7. G. Grätzer, General Lattice Theory, Birkhäuser, Basel, 1978.
  8. G. T. Jones, Pseudocomplemented semilattices, Ph.D. dissertation, U.C.L.A., 1972.
  9. A. I. Mal'cev, On certain frontier questions in algebra and mathematical logic, Proc. Internat. Congr. of Mathematicians, Moscow 1966, Mir, 1968, 217-231 (in Russian).
  10. A. I. Mal'cev, Algebraic Systems, Grundlehren Math. Wiss. 192, Springer, New York, 1973.
  11. H. P. Sankappanavar, Remarks on subdirectly irreducible pseudocomplemented semi-lattices and distributive pseudocomplemented lattices, Math. Japon. 25 (1980), 519-521.
  12. M. V. Sapir, The lattice of quasivarieties of semigroups, Algebra Universalis 21 (1985), 172-180.
  13. J. Schmid, Lee classes and sentences for pseudocomplemented semilattices, ibid. 25 (1988), 223-232.
  14. J. Schmid, On amalgamation classes of pseudocomplemented semilattices, ibid. 29 (1992), 402-418.
  15. A. Shafaat, On implicational completeness, Canad. J. Math. 26 (1974), 761-768.
  16. M. P. Tropin, An embedding of a free lattice into the lattice of quasivarieties of distributive lattices with pseudocomplementation, Algebra i Logika 22 (1983), 159-167 (in Russian).
  17. A. Wroński, The number of quasivarieties of distributive lattices with pseudocomplementation, Polish Acad. Sci. Inst. Philos. Sociol. Sect. Logic 5 (1976), 115-121.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm146/fm14637.pdf

Pages:
295-312
Main language of publication
English
Received
1994-02-28
Published
1995
Exact and natural sciences