ArticleOriginal scientific text
Title
Quasivarieties of pseudocomplemented semilattices
Authors 1, 2, 3, 4, 5
Affiliations
- Department of Mathematics, State University of New York, New Paltz, New York 12561, U.S.A.
- Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
- Department of Mathematics, University of Puerto Rico, Mayaguez, Puerto Rico 00681-5000, U.S.A.
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240, U.S.A.
- Institute of Mathematics, University of Bern, CH-3012 Bern, Switzerland
Abstract
Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are quasivarieties.
Bibliography
- M. E. Adams, Implicational classes of pseudocomplemented distributive lattices, J. London Math. Soc. 13 (1976), 381-384.
- M. E. Adams and W. Dziobiak, Q-universal quasivarieties of algebras, Proc. Amer. Math. Soc. 120 (1994), 1053-1059.
- M. E. Adams and W. Dziobiak, Lattices of quasivarieties of 3-element algebras, J. Algebra 166 (1994), 181-210.
- M. E. Adams and M. Gould, A construction for pseudocomplemented semilattices and two applications, Proc. Amer. Math. Soc. 106 (1989), 899-905.
- S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981.
- W. Dziobiak, On subquasivariety lattices of some varieties related with distributive p-algebras, Algebra Universalis 21 (1985), 62-67.
- G. Grätzer, General Lattice Theory, Birkhäuser, Basel, 1978.
- G. T. Jones, Pseudocomplemented semilattices, Ph.D. dissertation, U.C.L.A., 1972.
- A. I. Mal'cev, On certain frontier questions in algebra and mathematical logic, Proc. Internat. Congr. of Mathematicians, Moscow 1966, Mir, 1968, 217-231 (in Russian).
- A. I. Mal'cev, Algebraic Systems, Grundlehren Math. Wiss. 192, Springer, New York, 1973.
- H. P. Sankappanavar, Remarks on subdirectly irreducible pseudocomplemented semi-lattices and distributive pseudocomplemented lattices, Math. Japon. 25 (1980), 519-521.
- M. V. Sapir, The lattice of quasivarieties of semigroups, Algebra Universalis 21 (1985), 172-180.
- J. Schmid, Lee classes and sentences for pseudocomplemented semilattices, ibid. 25 (1988), 223-232.
- J. Schmid, On amalgamation classes of pseudocomplemented semilattices, ibid. 29 (1992), 402-418.
- A. Shafaat, On implicational completeness, Canad. J. Math. 26 (1974), 761-768.
- M. P. Tropin, An embedding of a free lattice into the lattice of quasivarieties of distributive lattices with pseudocomplementation, Algebra i Logika 22 (1983), 159-167 (in Russian).
- A. Wroński, The number of quasivarieties of distributive lattices with pseudocomplementation, Polish Acad. Sci. Inst. Philos. Sociol. Sect. Logic 5 (1976), 115-121.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm146/fm14637.pdf