ArticleOriginal scientific text

Title

On open maps of Borel sets

Authors 1

Affiliations

  1. Marine Technical University, Lotzmanskaya Str. 3, St. Petersburg, 190006, Russia

Abstract

We answer in the affirmative [Th. 3 or Corollary 1] the question of L. V. Keldysh [5, p. 648]: can every Borel set X lying in the space of irrational numbers ℙ not Gδ·Fσ and of the second category in itself be mapped onto an arbitrary analytic set Y ⊂ ℙ of the second category in itself by an open map? Note that under a space of the second category in itself Keldysh understood a Baire space. The answer to the question as stated is negative if X is Baire but Y is not Baire.

Keywords

open maps, Borel sets, analytic sets, space of the first category, space of the second category, Baire space

Bibliography

  1. F. van Engelen and J. van Mill, Borel sets in compact spaces: some Hurewicz-type theorems, Fund. Math. 124 (1984), 271-286.
  2. R. Engelking, General Topology, PWN, Warszawa, 1977.
  3. F. Hausdorff, Über innere Abbildungen, Fund. Math. 23 (1934), 279-291.
  4. W. Hurewicz, Relativ perfekte Teile von Punktmengen und Mengen (A), ibid. 12 (1928), 78-109.
  5. L. V. Keldysh, On open maps of analytic sets, Dokl. Akad. Nauk SSSR 49 (1945), 646-648 (in Russian).
  6. K. Kuratowski, Topology, Vol. I, Academic Press, 1976.
  7. S. V. Medvedev, Zero-dimensional homogeneous Borel sets, Dokl. Akad. Nauk SSSR 283 (1985), 542-545 (in Russian).
  8. J. van Mill, Characterization of some zero-dimensional separable metric spaces, Trans. Amer. Math. Soc. 264 (1981), 205-215.
  9. A. V. Ostrovsky, Concerning the Keldysh question about the structure of Borel sets, Mat. Sb. 131 (1986), 323-346 (in Russian); English transl.: Math. USSR-Sb. 59 (1988), 317-337.
  10. A. V. Ostrovsky, On open mappings of zero-dimensional spaces, Dokl. Akad. Nauk SSSR 228 (1976), 34-37 (in Russian); English transl.: Soviet Math. Dokl. 17 (1976), 647-654.
  11. A. V. Ostrovsky, On nonseparable τ-analytic sets and their mappings, Dokl. Akad. Nauk SSSR 226 (1976), 269-272 (in Russian); English transl.: Soviet Math. Dokl. 17 (1976), 99-102.
  12. A. V. Ostrovsky, Cartesian product of FII-spaces and analytic sets, Vestnik Moskov. Univ. Ser. Mat. 1975 (2), 29-34 (in Russian).
  13. A. V. Ostrovsky, Continuous images of the product ℂ × ℚ of the Cantor perfect set ℂ and the rational numbers ℚ, in: Seminar on General Topology, Moskov. Gos. Univ., Moscow, 1981, 78-85 (in Russian).
  14. J. Saint Raymond, La structure borélienne d'Effros est-elle standard?, Fund. Math. 100 (1978), 201-210.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm146/fm14631.pdf

Pages:
203-213
Main language of publication
English
Received
1993-03-31
Accepted
1993-12-22
Published
1995
Exact and natural sciences