ArticleOriginal scientific text

Title

The disjoint arcs property for homogeneous curves

Authors 1

Affiliations

  1. Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.

Keywords

homogeneous continuum, aposyndetic curve, solenoid, disjoint arcs property, Menger universal curve

Bibliography

  1. R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. 68 (1958), 1-16.
  2. M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988).
  3. J. H. Case, Another 1-dimensional homogeneous continuum which contains an arc, Pacific J. Math. 11 (1961), 455-469.
  4. E. Duda, P. Krupski and J. T. Rogers, On locally chainable homogeneous continua, Topology Appl. 42 (1991), 95-99.
  5. E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55.
  6. F. B. Jones, The aposyndetic decomposition of homogeneous continua, Topology Proc. 8 (1983), 51-54.
  7. J. Krasinkiewicz, On homeomorphisms of the Sierpiński curve, Comment. Math. Prace Mat. 12 (1969), 255-257.
  8. P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118.
  9. P. Krupski and J. R. Prajs, Outlet points and homogeneous continua, Trans. Amer. Math. Soc. 318 (1990), 123-141.
  10. T. Maćkowiak, Terminal continua and the homogeneity, Fund. Math. 127 (1987), 177-186.
  11. T. Maćkowiak and E. D. Tymchatyn, Continuous mappings on continua II, Dissertationes Math. (Rozprawy Mat.) 225 (1984).
  12. J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets, ibid. 252 (1986).
  13. P. Minc and J. T. Rogers, Jr., Some new examples of homogeneous curves, Topology Proc. 10 (1985), 347-356.
  14. R. L. Moore, Triodic continua in the plane, Fund. Math. 13 (1929), 261-263.
  15. J. R. Prajs, Openly homogeneous continua having only arcs for proper subcontinua, Topology Appl. 31 (1989), 133-147.
  16. J. T. Rogers, Jr., Decompositions of homogeneous continua, Pacific J. Math. 99 (1982), 137-144.
  17. J. T. Rogers, An aposyndetic homogeneous curve that is not locally connected, Houston J. Math. 9 (1983), 433-440.
  18. J. T. Rogers, Aposyndetic continua as bundle spaces, Trans. Amer. Math. Soc. 283 (1984), 49-55.
  19. J. T. Rogers, Homogeneous curves that contain arcs, Topology Appl. 21 (1985), 95-101.
  20. J. T. Rogers, Decompositions of continua over the hyperbolic plane, Trans. Amer. Math. Soc. 310 (1988), 277-291.
  21. G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, R.I., 1942.
  22. G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm146/fm14626.pdf

Pages:
159-169
Main language of publication
English
Received
1993-10-05
Published
1995
Exact and natural sciences