ArticleOriginal scientific text
Title
The disjoint arcs property for homogeneous curves
Authors 1
Affiliations
- Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Abstract
The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.
Keywords
homogeneous continuum, aposyndetic curve, solenoid, disjoint arcs property, Menger universal curve
Bibliography
- R. D. Anderson, One-dimensional continuous curves and a homogeneity theorem, Ann. of Math. 68 (1958), 1-16.
- M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988).
- J. H. Case, Another 1-dimensional homogeneous continuum which contains an arc, Pacific J. Math. 11 (1961), 455-469.
- E. Duda, P. Krupski and J. T. Rogers, On locally chainable homogeneous continua, Topology Appl. 42 (1991), 95-99.
- E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55.
- F. B. Jones, The aposyndetic decomposition of homogeneous continua, Topology Proc. 8 (1983), 51-54.
- J. Krasinkiewicz, On homeomorphisms of the Sierpiński curve, Comment. Math. Prace Mat. 12 (1969), 255-257.
- P. Krupski, Recent results on homogeneous curves and ANR's, Topology Proc. 16 (1991), 109-118.
- P. Krupski and J. R. Prajs, Outlet points and homogeneous continua, Trans. Amer. Math. Soc. 318 (1990), 123-141.
- T. Maćkowiak, Terminal continua and the homogeneity, Fund. Math. 127 (1987), 177-186.
- T. Maćkowiak and E. D. Tymchatyn, Continuous mappings on continua II, Dissertationes Math. (Rozprawy Mat.) 225 (1984).
- J. C. Mayer, L. G. Oversteegen and E. D. Tymchatyn, The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets, ibid. 252 (1986).
- P. Minc and J. T. Rogers, Jr., Some new examples of homogeneous curves, Topology Proc. 10 (1985), 347-356.
- R. L. Moore, Triodic continua in the plane, Fund. Math. 13 (1929), 261-263.
- J. R. Prajs, Openly homogeneous continua having only arcs for proper subcontinua, Topology Appl. 31 (1989), 133-147.
- J. T. Rogers, Jr., Decompositions of homogeneous continua, Pacific J. Math. 99 (1982), 137-144.
- J. T. Rogers, An aposyndetic homogeneous curve that is not locally connected, Houston J. Math. 9 (1983), 433-440.
- J. T. Rogers, Aposyndetic continua as bundle spaces, Trans. Amer. Math. Soc. 283 (1984), 49-55.
- J. T. Rogers, Homogeneous curves that contain arcs, Topology Appl. 21 (1985), 95-101.
- J. T. Rogers, Decompositions of continua over the hyperbolic plane, Trans. Amer. Math. Soc. 310 (1988), 277-291.
- G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ. 28, Providence, R.I., 1942.
- G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm146/fm14626.pdf