ArticleOriginal scientific text
Title
Properly homotopic nontrivial planes are isotopic
Authors 1
Affiliations
- Department of Mathematics, Pittsburg State University, Pittsburg, Kansas 66762, U.S.A.
Abstract
It is proved that two planes that are properly homotopic in a noncompact, orientable, irreducible 3-manifold that is not homeomorphic to are isotopic. The end-reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun are used.
Bibliography
- [BT] M. G. Brin and T. L. Thickstun, 3-manifolds which are end 1-movable, Mem. Amer. Math. Soc. 411 (1989).
- [BBF] E. M. Brown, M. S. Brown and C. D. Feustel, On properly embedding planes in 3-manifolds, Trans. Amer. Math. Soc. 55 (1976), 461-464.
- [BF] E. M. Brown and C. D. Feustel, On properly embedding planes in arbitrary 3-manifolds, Proc. Amer. Math. Soc. 94 (1985), 173-178.
- [He] J. Hempel, 3-manifolds, Ann. of Math. Stud. 86, Princeton Univ. Press, 1976.
- [Wa] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88.
- [W] B. N. Winters, Properly homotopic, nontrivial planes are parallel, Topology Appl. 48 (1992), 235-243.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm146/fm14624.pdf