ArticleOriginal scientific text

Title

Sums of Darboux and continuous functions

Authors 1

Affiliations

  1. Department of Mathematics, York University Toronto, Ontario, Canada M3J 1P3

Abstract

It is shown that for every Darboux function F there is a non-constant continuous function f such that F + f is still Darboux. It is shown to be consistent - the model used is iterated Sacks forcing - that for every Darboux function F there is a nowhere constant continuous function f such that F + f is still Darboux. This answers questions raised in [5] where it is shown that in various models of set theory there are universally bad Darboux functions, Darboux functions whose sum with any nowhere constant, continuous function fails to be Darboux.

Bibliography

  1. J. E. Baumgartner and R. Laver, Iterated perfect set forcing, Ann. Math. Logic 17 (1979), 271-288.
  2. A. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, Berlin, 1978.
  3. A. Bruckner and J. Ceder, Darboux continuity, Jahresber. Deutsch. Math.-Verein. 67 (1965), 100.
  4. A. Bruckner and J. Ceder, On the sums of Darboux functions, Proc. Amer. Math. Soc. 51 (1975), 97-102.
  5. B. Kirchheim and T. Natkaniec, On universally bad Darboux functions, Real Anal. Exchange 16 (1990-91), 481-486.
  6. P. Komjáth, A note on Darboux functions, ibid. 18 (1992-93), 249-252.
  7. A. Miller, Mapping a set of reals onto the reals, J. Symbolic Logic 48 (1983), 575-584.
  8. T. Radakovič, Über Darbouxsche und stetige Funktionen, Monatsh. Math. Phys. 38 (1931), 117-122.
  9. S. Saks, Theory of the Integral, Hafner, New York, 1937.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm146/fm14622.pdf

Pages:
107-120
Main language of publication
English
Received
1993-03-23
Accepted
1994-02-24
Published
1995
Exact and natural sciences