ArticleOriginal scientific text

Title

The space of ANR’s in n

Authors 1, 1

Affiliations

  1. Department of Mathematics, The University of Oklahoma, 601 Elm Avenue, Room 423, Norman, Oklahoma 73019-0315, U.S.A.

Abstract

The hyperspaces ANR(n) and AR(n) in 2n(n3) consisting respectively of all compact absolute neighborhood retracts and all compact absolute retracts are studied. It is shown that both have the Borel type of absolute Gδσδ-spaces and that, indeed, they are not Fσδσ-spaces. The main result is that ANR(n) is an absorber for the class of all absolute Gδσδ-spaces and is therefore homeomorphic to the standard model space Ω3 of this class.

Keywords

hyperspace, absolute neighborhood retract, absolute retract, Gδσδ-set, absorber

Bibliography

  1. [BGvM] J. Baars, H. Gladdines and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), 147-182.
  2. [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975.
  3. [BM] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional retracts, Michigan Math. J. 33 (1986), 291-313.
  4. [Bor] K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202.
  5. [C1] R. Cauty, L'espace des pseudo-arcs d'une surface, Trans. Amer. Math. Soc. 331 (1992), 247-263.
  6. [C2] R. Cauty, L'espace des arcs d'une surface, ibid. 332 (1992), 193-209.
  7. [C3] R. Cauty, Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de L1, Fund. Math. 139 (1991), 23-36.
  8. [CDGvM] R. Cauty, T. Dobrowolski, H. Gladdines et J. van Mill, Les hyperespaces des rétractes absolus et des rétractes absolus de voisinage du plan, preprint.
  9. [Cu1] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107.
  10. [Cu2] D. W. Curtis, Hyperspaces of non-compact metric spaces, Compositio Math. 40 (1986), 139-152.
  11. [CN] D. W. Curtis and N. T. Nhu, Hyperspaces of finite subsets which are homeomorphic to 0-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260.
  12. [DvMM] J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of (2_f)ω, Pacific J. Math. 152 (1992), 255-273.
  13. [DM] T. Dobrowolski and W. Marciszewski, Classification of function spaces with the pointwise topology determined by a countable dense set, preprint.
  14. [DR] T. Dobrowolski and L. R. Rubin, The hyperspaces of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 164 (1994), 15-39.
  15. [GvM] H. Gladdines and J. van Mill, Hyperspaces of Peano continua of euclidean spaces, Fund. Math. 142 (1993), 173-188.
  16. [Kur1] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, ibid. 43 (1956), 114-138.
  17. [Kur2] K. Kuratowski, Topology I, Academic Press, New York and London, 1966.
  18. [MS] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
  19. [vM] J. van Mill, Infinite-Dimensional Topology: prerequisites and introduction, North-Holland, Amsterdam, 1989.
  20. [SR] J. Saint Raymond, Fonctions boréliennes sur un quotient, Bull. Sci. Math. (2) 100 (1976), 141-147.
  21. [Tor] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l2-manifolds, Fund. Math. 101 (1978), 93-110.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm146/fm14613.pdf

Pages:
31-58
Main language of publication
English
Received
1993-06-25
Accepted
1993-10-05
Published
1994
Exact and natural sciences