We characterize those Baire one functions f for which the diagonal product x → (f(x), g(x)) has a connected graph whenever g is approximately continuous or is a derivative.
Department of Mathematics, Pedagogical University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Bibliografia
[1] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, Berlin, 1978.
[2] A. M. Bruckner, J. Mařík and C. E. Weil, Baire one, null functions, in: Contemp. Math. 42, Amer. Math. Soc., 1985, 29-41.
[3] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-506.
[4] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
[5] J. Lukeš, J. Malý and L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math. 1189, Springer, Berlin, 1986.
[6] A. Maliszewski, Characteristic functions and products of bounded derivatives, Proc. Amer. Math. Soc., to appear.
[7] C. J. Neugebauer, On a paper by M. Iosifescu and S. Marcus, Canad. Math. Bull. 6 (1963), 367-371.
[8] R. J. O'Malley, Approximately continuous functions which are continuous almost everywhere, Acta Math. Acad. Sci. Hungar. 33 (1979), 395-402.
[9] G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions and derivatives, ibid. 25 (1974), 189-212.
[10] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv146i1p21bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.