PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1994-1995 | 146 | 1 | 1-20
Tytuł artykułu

Algebraic ramifications of the common extension problem for group-valued measures

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let G be an Abelian group and let μ: A → G and ν: B → G be finitely additive measures (charges) defined on fields A and B of subsets of a set X. It is assumed that μ and ν agree on A ∩ B, i.e. they are consistent. The existence of common extensions of μ and ν is investigated, and conditions on A and B facilitating such extensions are given.
Słowa kluczowe
Rocznik
Tom
146
Numer
1
Strony
1-20
Opis fizyczny
Daty
wydano
1994
otrzymano
1993-03-10
poprawiono
1993-11-16
poprawiono
1994-03-28
Twórcy
  • Fachbereich 6-Mathematik, Universität GHS, 45117 Essen, Germany
autor
  • Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459-0128, U.S.A.
Bibliografia
  • [1] A. Basile and K. P. S. Bhaskara Rao, Common extensions of group-valued charges, Boll. Un. Mat. Ital. 7 (5-A) (1991), 157-162.
  • [2] A. Basile, K. P. S. Bhaskara Rao and R. M. Shortt, Bounded common extensions of bounded charges, Proc. Amer. Math. Soc. 121 (1994), 137-143.
  • [3] K. P. S. Bhaskara Rao and R. M. Shortt, Common extensions for homomorphisms and group-valued charges, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 125-140.
  • [4] K. P. S. Bhaskara Rao and R. M. Shortt, Group-valued charges: common extensions and the finite Chinese remainder property, Proc. Amer. Math. Soc. 113 (1991), 965-972.
  • [5] T. Carlson and K. Prikry, Ranges of signed measures, Period. Math. Hungar. 13 (1982), 151-155.
  • [6] S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235.
  • [7] L. Fuchs, Infinite Abelian Groups, Vols. I and II, Academic Press, New York, 1970 & 1973.
  • [8] R. Göbel and R. Prelle, Solution of two problems on cotorsion abelian groups, Arch. Math. (Basel) 31 (1978), 423-431.
  • [9] Z. Lipecki, On common extensions of two quasi-measures, Czechoslovak Math. J. 36 (1986), 489-494.
  • [10] E. Marczewski, Measures in almost independent fields, Fund. Math. 38 (1951), 217-229.
  • [11] K. M. Rangaswamy and J. D. Reid, Common extensions of finitely additive measures and a characterization of cotorsion Abelian groups, in: Proc. Curacao, Abelian Groups, Marcel Dekker, New York, 1993, 231-238.
  • [12] L. Salce, Cotorsion theories for abelian groups, Symposia Math. 23 (1979), 11-32.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv146i1p1bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.