ArticleOriginal scientific text

Title

Chaotic continua of (continuum-wise) expansive homeomorphisms and chaos in the sense of Li and Yorke

Authors 1, 2

Affiliations

  1. Faculty of Integrated, Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 724 Japan
  2. Institute of Mathematics, University of Tsukuba, Ibaraki 305, Japan

Abstract

A homeomorphism f : X → X of a compactum X is expansive (resp. continuum-wise expansive) if there is c > 0 such that if x, y ∈ X and x ≠ y (resp. if A is a nondegenerate subcontinuum of X), then there is n ∈ ℤ such that d(fn(x),fn(y))>c (resp. diamfn(A)>c). We prove the following theorem: If f is a continuum-wise expansive homeomorphism of a compactum X and the covering dimension of X is positive (dim X > 0), then there exists a σ-chaotic continuum Z = Z(σ) of f (σ = s or σ = u), i.e. Z is a nondegenerate subcontinuum of X satisfying: (i) for each x ∈ Z, Vσ(x;Z) is dense in Z, and (ii) there exists τ > 0 such that for each x ∈ Z and each neighborhood U of x in X, there is y ∈ U ∩ Z such that limfnd(fn(x),fn(y)) ≥ τ if σ = s, and limfnd(f-n(x),f-n(y)) ≥ τ if σ = u; in particular, Wσ(x)Wσ(y). Here   Vs(x;Z)={zZ there is a subcontinuum A of Z such that       x, z ∈ A and limndiamfn(A)=0}, Vu(x;Z)={zZthereisacontmAofZsucht ^    x,zAandlim_{n → ∞} diam f^{-n}(A) = 0},  W^s(x) = {x' ∈ X|lim_{n → ∞} d(f^n(x), f^n(x')) = 0},and  W^u(x) = {x' ∈ X|lim_{n → ∞} d(f^{-n}(x), f^{-n}(x'))=0}.Asacorollary,iffisacontm-wiseexpansivehomeomorϕsmofacoactumXwithdimX>0andZisaσ-chaoticcontmoff,thenforalmostallCanrsetsCZ,forf^{-1}ischaoticonCthesenseofLiandYorkeaordgasσ=soru).Also,weprovetif^fisacontm-wiseexpansivehomeomorϕsmofacoactumXwithdimX>0andthereisafitefamily\mathbb{F}ofgraphssuchtX^is\mathbb{F}!$!-like, then each chaotic continuum of f is indecomposable. Note that every expansive homeomorphism is continuum-wise expansive.

Keywords

expansive homeomorphism, continuum-wise expansive homeomorphism, stable and unstable sets, scrambled set, chaotic in the sense of Li and Yorke, independent, indecomposable continuum

Bibliography

  1. N. Aoki, Topological dynamics, in: Topics in General Topology, K. Morita and J. Nagata (eds.), Elsevier, 1989, 625-740.
  2. B. F. Bryant, Unstable self-homeomorphisms of a compact space, Thesis, Vanderbilt University, 1954.
  3. S. B. Curry, One-dimensional nonseparating plane continua with disjoint ε-dense subcontinua, Topology Appl. 39 (1991), 145-151.
  4. R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, 1989.
  5. W. Gottschalk, Minimal sets: an introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336-351.
  6. W. Gottschalk and G. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ. 34, Amer. Math. Soc., 1955.
  7. K. Hiraide, Expansive homeomorphisms on compact surfaces are pseudo-Anosov, Osaka J. Math. 27 (1990), 117-162.
  8. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, N.J., 1948.
  9. J. F. Jacobson and W. R. Utz, The nonexistence of expansive homeomorphisms of a closed 2-cell, Pacific J. Math. 10 (1960), 1319-1321.
  10. H. Kato, The nonexistence of expansive homeomorphisms of Peano continua in the plane, Topology Appl. 34 (1990), 161-165.
  11. H. Kato, On expansiveness of shift homeomorphisms in inverse limits of graphs, Fund. Math. 137 (1991), 201-210.
  12. H. Kato, The nonexistence of expansive homeomorphisms of dendroids, ibid. 136 (1990), 37-43.
  13. H. Kato, Embeddability into the plane and movability on inverse limits of graphs whose shift maps are expansive, Topology Appl. 43 (1992), 141-156.
  14. H. Kato, Expansive homeomorphisms in continuum theory, ibid. 45 (1992), 223-243.
  15. H. Kato, Expansive homeomorphisms and indecomposability, Fund. Math. 139 (1991), 49-57.
  16. H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), 576-598.
  17. H. Kato, Concerning continuum-wise fully expansive homeomorphisms of continua, Topology Appl. 53 (1993), 239-258.
  18. H. Kato, Striped structures of stable and unstable sets of expansive homeomorphisms and a theorem of K. Kuratowski on independent sets, Fund. Math. 143 (1993), 153-165.
  19. H. Kato and K. Kawamura, A class of continua which admit no expansive homeomorphisms, Rocky Mountain J. Math. 22 (1992), 645-651.
  20. K. Kuratowski, Topology, Vol. II, Academic Press, New York, 1968.
  21. K. Kuratowski, Applications of Baire-category method to the problem of independent sets, Fund. Math. 81 (1974), 65-72.
  22. T. Y Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992.
  23. R. Ma né, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc. 252 (1979), 313-319.
  24. S. B. Nadler, Jr., Hyperspaces of Sets, Pure and Appl. Math. 49, Dekker, New York, 1978.
  25. R. V. Plykin, Sources and sinks of A-diffeomorphisms of surfaces, Math. USSR-Sb. 23 (1974), 233-253.
  26. W. Reddy, The existence of expansive homeomorphisms of manifolds, Duke Math. J. 32 (1965), 627-632.
  27. W. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774.
  28. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Math. 79, Springer, 1982.
  29. R. F. Williams, A note on unstable homeomorphisms, Proc. Amer. Math. Soc. 6 (1955), 308-309.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm145/fm14534.pdf

Pages:
261-279
Main language of publication
English
Received
1993-05-17
Accepted
1994-01-15
Published
1994
Exact and natural sciences