ArticleOriginal scientific text
Title
Classical-type characterizations of non-metrizable ANE(n)-spaces
Authors 1, 2
Affiliations
- Institute of Mathematics with Computer Center, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 8, 1113 Sofia, Bulgaria
- Department of Mathematics, University of Sofia, 5 James Bourchier Blvd., 1126 Sofia, Bulgaria
Abstract
The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is (resp., ) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.
Keywords
absolute (neighborhood) extensor in dimension n, n-regular base, n-regular extension operator
Bibliography
- A. Chigogidze, Noncompact absolute extensors in dimension n, n-soft mappings, and their applications, Izv. Akad. Nauk SSSR 50 (1) (1986), 156-180 (in Russian); English transl.: Math. USSR-Izv. 28 (1987), 151-174.
- A. Dranishnikov, Absolute extensors in dimension n and dimension-raising n-soft maps, Uspekhi Mat. Nauk 39 (5) (1984), 55-95 (in Russian); English transl.: Russian Math. Surveys 39 (1984).
- J. Dugundji, Absolute neighborhood retracts and local connectedness in arbitrary metric spaces, Compositio Math. 13 (1958), 229-246.
- V. Filippov, On the dimension of products of topological spaces, Fund. Math. 106 (1980), 181-212 (in Russian).
- V. Gutev, Selections for quasi-l.s.c. mappings with uniformly equi-
range, Set-Valued Anal. 1 (1993), 319-328. - R. Haydon, On a problem of Pełczyński: Milutin spaces, Dugundji spaces and AE(0-dim), Studia Math. 52 (1974), 23-31.
- K. Kuratowski, Sur les espaces localement connexes et péaniens en dimension n, Fund. Math. 24 (1935), 269-287.
- E. Michael, Continuous selections II, Ann. of Math. 64 (1956), 562-580.
- R. Pol and E. Puzio-Pol, Remarks on Cartesian products, Fund. Math. 93 (1976), 57-69.
- E. V. Ščepin [E. V. Shchepin], Functors and uncountable powers of compacta, Uspekhi Mat. Nauk 36 (3) (1981), 3-62 (in Russian); English transl.: Russian Math. Surveys 36 (1981).
- L. Shirokov, On AE(n)-compacta and n-soft mappings, Sibirsk. Mat. Zh. 33 (1992), 151-156 (in Russian).
- H. Toruńczyk, Concerning locally homotopy negligible sets and characterizations of
-manifolds, Fund. Math. 101 (1978), 93-110. - V. Valov, Another characterization of AE(0)-spaces, Pacific J. Math. 127 (1987), 199-208.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm145/fm14533.pdf