ArticleOriginal scientific text
Title
Cantor manifolds in the theory of transfinite dimension
Authors 1
Affiliations
- Department of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Abstract
For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space such that , and no closed subset L of with ind L less than the predecessor of α is a partition in . An α-dimensional Cantor Ind-manifold can be constructed similarly.
Bibliography
- V. A. Chatyrko, Counterparts of Cantor manifolds for transfinite dimensions, Mat. Zametki 42 (1987), 115-119 (in Russian).
- R. Engelking, Dimension Theory, PWN, Warszawa, 1978.
- R. Engelking, Transfinite dimension, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 131-161.
- R. Engelking, General Topology, Heldermann, Berlin, 1989.
- D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167-173.
- W. Hurewicz, Ueber unendlich-dimensionale Punktmengen, Proc. Akad. Amsterdam 31 (1928), 916-922.
- M. Landau, Strong transfinite ordinal dimension, Bull. Amer. Math. Soc. 21 (1969), 591-596.
- B. T. Levšenko [B. T. Levshenko], Spaces of transfinite dimensionality, Mat. Sb. 67 (1965), 255-266 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 72 (1968), 135-148.
- L. A. Luxemburg, On compact spaces with non-coinciding transfinite dimensions, Dokl. Akad. Nauk SSSR 212 (1973), 1297-1300 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 1593-1597.
- W. Olszewski, Universal spaces in the theory of transfinite dimension, I, Fund. Math. 144 (1994), 243-258.
- A. R. Pears, A note on transfinite dimension, ibid. 71 (1971), 215-221.
- Yu. M. Smirnov, On universal spaces for certain classes of infinite dimensional spaces, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 185-196 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 21 (1962), 21-33.
- G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177-195.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm145/fm14513.pdf