ArticleOriginal scientific text

Title

Minimal bi-Lipschitz embedding dimension of ultrametric spaces

Authors 1, 2

Affiliations

  1. Department of Mathematics, P.O. Box 4 (hallituS.A.u 15), Fin-00014 University of Helsinki, Finland
  2. epartment of Mathematics, Penn State Altoona, Altoona, Pa 16601-3760, U.S.A.

Abstract

We prove that an ultrametric space can be bi-Lipschitz embedded in n if its metric dimension in Assouad's sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.

Bibliography

  1. M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577.
  2. P. Assouad, Espaces métriques, plongements, facteurs, Thèse de doctorat d'État, Orsay, 1977.
  3. P. Assouad, Étude d'une dimension métrique liée à la possibilité de plongements dans n, C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734.
  4. P. Assouad, Plongements Lipschitziens dans n, Bull. Soc. Math. France 111 (1983), 429-448.
  5. A. Ben-Artzi, A. Eden, C. Foias and B. Nicolaenko, Hölder continuity for the inverse of Ma né's projection, J. Math. Anal. Appl. 178 (1993), 22-29.
  6. R. Engelking, Dimension Theory, PWN, Warszawa, and North-Holland, Amsterdam, 1978.
  7. K. Falconer, Fractal Geometry, Wiley, Chichester, 1990.
  8. J. B. Kelly, Metric inequalities and symmetric differences, in: Inequalities-II, O. Shisha (ed.), Academic Press, New York, 1970, 193-212.
  9. J. B. Kelly, Hypermetric spaces and metric transforms, in: Inequalities-III, O. Shisha (ed.), Academic Press, New York, 1972, 149-158.
  10. A. Yu. Lemin, On the stability of the property of a space being isosceles, Uspekhi Mat. Nauk 39 (5) (1984), 249-250 (in Russian); English transl.: Russian Math. Surveys 39 (5) (1984), 283-284.
  11. A. Yu. Lemin, Isometric imbedding of isosceles (non-Archimedean) spaces in Euclidean spaces, Dokl. Akad. Nauk SSSR 285 (1985), 558-562 (in Russian); English transl.: Soviet Math. Dokl. 32 (1985), 740-744.
  12. J. Luukkainen and P. Tukia, Quasisymmetric and Lipschitz approximation of embeddings, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 343-367.
  13. J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, ibid. 3 (1977), 85-122.
  14. G. Michon, Les cantors réguliers, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 673-675.
  15. H. Movahedi-Lankarani, On the inverse of Ma né's projection, Proc. Amer. Math. Soc. 116 (1992), 555-560.
  16. H. Movahedi-Lankarani, An invariant of bi-Lipschitz maps, Fund. Math. 143 (1993), 1-9.
  17. A. C. M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.
  18. W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge, 1984.
  19. A. F. Timan, On the isometric mapping of some ultrametric spaces into Lp-spaces, Trudy Mat. Inst. Steklov. 134 (1975), 314-326 (in Russian); English transl.: Proc. Steklov Inst. Math. 134 (1975), 357-370.
  20. A. F. Timan and I. A. Vestfrid, Any separable ultrametric space can be isometrically imbedded in l2, Funktsional. Anal. i Prilozhen. 17 (1) (1983), 85-86 (in Russian); English transl.: Functional Anal. Appl. 17 (1983), 70-71.
  21. J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Springer, Berlin, 1975.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm144/fm14426.pdf

Pages:
181-193
Main language of publication
English
Received
1993-03-24
Published
1994
Exact and natural sciences