We study the $L_{∞, w}$-theory of sequences of dual groups and give a complete classification of the $L_{∞, w}$-elementary classes by finding simple invariants for them. We show that nonstandard models exist.
Department of Mathematics, University College of the Fraser Valley, 33844, King Rd., Abbotsford, British Columbia V2S 4N2, Canada
Bibliografia
[1] J. Barwise, Back and forth through infinitary logic, in: Studies in Model Theory, MAA Stud. Math. 8, Math. Assoc. Amer., 1973, 5-34.
[2] S. Chase, Function topologies on abelian groups, Illinois J. Math. 7 (1963), 593-608.
[3] K. Eda and H. Ohta, On abelian groups of integer-valued continuous functions, their ℤ-duals and ℤ-reflexivity, in: Abelian Group Theory, Proc. Third Conf. Oberwolfach, Gordon & Breach, 1987, 241-257.
[4] P. Eklof and A. Mekler, Almost Free Modules, North-Holland, 1990.
[5] P. Eklof, A. Mekler and S. Shelah, On strongly-non-reflexive groups, Israel J. Math. 59 (1987), 283-298.
[6] E. Ellentuck, Categoricity regained, J. Symbolic Logic 41 (1976), 639-643.
[7] G. Reid, Almost Free Abelian Groups, lecture notes, Tulane University, unpublished, 1968.
[8] G. Schlitt, Sheaves of abelian groups and the quotients A**/A, J. Algebra 158 (1993), 50-60.