ArticleOriginal scientific text

Title

The theory of dual groups

Authors 1, 1

Affiliations

  1. Department of Mathematics, University College of the Fraser Valley, 33844, King Rd., Abbotsford, British Columbia V2S 4N2, Canada

Abstract

We study the L,w-theory of sequences of dual groups and give a complete classification of the L,w-elementary classes by finding simple invariants for them. We show that nonstandard models exist.

Bibliography

  1. J. Barwise, Back and forth through infinitary logic, in: Studies in Model Theory, MAA Stud. Math. 8, Math. Assoc. Amer., 1973, 5-34.
  2. S. Chase, Function topologies on abelian groups, Illinois J. Math. 7 (1963), 593-608.
  3. K. Eda and H. Ohta, On abelian groups of integer-valued continuous functions, their ℤ-duals and ℤ-reflexivity, in: Abelian Group Theory, Proc. Third Conf. Oberwolfach, Gordon & Breach, 1987, 241-257.
  4. P. Eklof and A. Mekler, Almost Free Modules, North-Holland, 1990.
  5. P. Eklof, A. Mekler and S. Shelah, On strongly-non-reflexive groups, Israel J. Math. 59 (1987), 283-298.
  6. E. Ellentuck, Categoricity regained, J. Symbolic Logic 41 (1976), 639-643.
  7. G. Reid, Almost Free Abelian Groups, lecture notes, Tulane University, unpublished, 1968.
  8. G. Schlitt, Sheaves of abelian groups and the quotients A**/A, J. Algebra 158 (1993), 50-60.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm144/fm14423.pdf

Pages:
129-142
Main language of publication
English
Received
1992-08-20
Accepted
1993-06-24
Published
1994
Exact and natural sciences