ArticleOriginal scientific text
Title
Goldstern–Judah–Shelah preservation theorem for countable support iterations
Authors 1
Affiliations
- Matematický Ústav Sav, Jesenná 5, 041 54 Košice, Slovakia
Abstract
[1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213.
[2] T. Bartoszyński and H. Judah, Measure and Category, in preparation.
[3] D. H. Fremlin, Cichoń's diagram, Publ. Math. Univ. Pierre Marie Curie 66, Sém. Initiation Anal., 1983/84, Exp. 5, 13 pp.
[4] M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals, Conference of Bar-Ilan University, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1992, 307-362.
[5] H. Judah and M. Repický, No random reals in countable support iterations, preprint.
[6] H. Judah and S. Shelah, The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), J. Symbolic Logic 55 (1990), 909-927.
[7] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114.
[8] J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic 51 (1986), 957-968.
[9] J. Raisonnier and J. Stern, The strength of measurability hypotheses, Israel J. Math. 50 (1985), 337-349.
[10] M. Repický, Properties of measure and category in generalized Cohen's and Silver's forcing, Acta Univ. Carol. - Math. Phys. 28 (1987), 101-115.
[11] S. Shelah, Proper Forcing, Springer, Berlin, 1984.
[12] J. Truss, Sets having caliber , in: Logic Colloquium 76, Stud. Logic Found. Math. 87, North-Holland, 1977, 595-612.
Keywords
countable support iterated forcing, proper forcing, preservation theorem for iterated forcing
Bibliography
- T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213.
- T. Bartoszyński and H. Judah, Measure and Category, in preparation.
- D. H. Fremlin, Cichoń's diagram, Publ. Math. Univ. Pierre Marie Curie 66, Sém. Initiation Anal., 1983/84, Exp. 5, 13 pp.
- M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals, Conference of Bar-Ilan University, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1992, 307-362.
- H. Judah and M. Repický, No random reals in countable support iterations, preprint.
- H. Judah and S. Shelah, The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), J. Symbolic Logic 55 (1990), 909-927.
- A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114.
- J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic 51 (1986), 957-968.
- J. Raisonnier and J. Stern, The strength of measurability hypotheses, Israel J. Math. 50 (1985), 337-349.
- M. Repický, Properties of measure and category in generalized Cohen's and Silver's forcing, Acta Univ. Carol. - Math. Phys. 28 (1987), 101-115.
- S. Shelah, Proper Forcing, Springer, Berlin, 1984.
- J. Truss, Sets having caliber
, in: Logic Colloquium 76, Stud. Logic Found. Math. 87, North-Holland, 1977, 595-612.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm144/fm14415.pdf