ArticleOriginal scientific text

Title

Examples for Souslin forcing

Authors 1, 1, 2, 3, 4

Affiliations

  1. Department of Mathematics and Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel
  2. Mathematical Institute, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
  3. Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
  4. Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, U.S.A.

Abstract

We give several examples of Souslin forcing notions. For instance, we show that there exists a proper analytical forcing notion without ccc and with no perfect set of incompatible elements, we give an example of a Souslin ccc partial order without the Knaster property, and an example of a totally nonhomogeneous Souslin forcing notion.

Bibliography

  1. [Ba] J. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), London Math. Soc. Lecture Note Ser. 87, Cambridge Univ. Press, 1983, 1-59.
  2. [BJ] J. Bagaria and H. Judah, Amoeba forcing, Suslin absoluteness and additivity of measure, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 155-173.
  3. [BaJ] T. Bartoszyński and H. Judah, Jumping with random reals, to appear.
  4. [Je] T. Jech, Set Theory, Academic Press, New York, 1978.
  5. [Je1] T. Jech, Multiple Forcing, Cambridge Tracts in Math. 88, Cambridge Univ. Press, 1986.
  6. [JR] H. Judah and A. Rosłanowski, On Shelah's amalgamation, in: Set Theory of the Reals, Proc. Bar-Ilan Univ., 1991, Israel Math. Conf. Proc. 6, Bar-Ilan Univ., 1993, 385-414.
  7. [JS1] H. Judah and S. Shelah, Souslin forcing, J. Symbolic Logic 53 (1988), 1188-1207.
  8. [JS2] H. Judah and S. Shelah, Martin's axioms, measurability and equiconsistency results, ibid. 54 (1989), 78-94.
  9. [Ra] J. Raisonnier, A mathematical proof of S. Shelah's theorem on the measure problem and related results, Israel J. Math. 48 (1984), 48-56.
  10. [Ro] J. Roitman, Adding a random or a Cohen real: topological consequences and the effect on Martin's axiom, Fund. Math. 103 (1979), 47-60.
  11. [Sh] S. Shelah, Can you take Solovay's inaccessible away?, Israel J. Math. 48 (1984), 1-47.
  12. [Sh1] S. Shelah, Vive la Différence I: nonisomorphism of ultrapowers of countable models, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 357-405.
  13. [Sh2] S. Shelah, Proper and Improper Forcing, in preparation.
  14. [Ta] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43.
  15. [To] S. Todorčević, Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), 1125-1128.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm144/fm14413.pdf

Pages:
23-42
Main language of publication
English
Received
1992-05-27
Accepted
1993-05-14
Published
1994
Exact and natural sciences