ArticleOriginal scientific text
Title
Une caractérisation des rétractes absolus de voisinage
Authors 1
Affiliations
- 22, Rue Jouvenet F-75016 Paris, Fu
Abstract
We prove that a metric space is an ANR if, and only if, every open subset of X has the homotopy type of a CW-complex.
Bibliography
- C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
- R. Cauty, Convexité topologique et prolongement des fonctions continues, Compositio Math. 27 (1973), 233-271.
- T. tom Dieck, K. H. Kamps und D. Puppe, Homotopietheorie, Lecture Notes in Math. 157, Springer, Berlin, 1970.
- C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200-242.
- R. Engelking, General Topology, PWN, Warszawa, 1977.
- R. Geoghegan, Conjecture 6, in: Proc. Internat. Conf. on Geometric Topology, Warszawa, 1978, Presented Problems, PWN, Warszawa, 1980, p. 463.
- R. Geoghegan, Open problems in infinite-dimensional topology, Topology Proc. 4 (1979), 287-338.
- J. B. Giever, On the equivalence of two singular homology theories, Ann. of Math. 51 (1950), 178-191.
- S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.
- G. Kozlowski, Images of ANR's, manuscrit non publié.
- A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, 1975.
- E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
- A. Strøm, Note on cofibrations II, Math. Scand. 22 (1968), 130-142.
- J. E. West, Open problems in infinite dimensional topology, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), Elsevier, 1990, 524-597.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm144/fm14412.pdf