ArticleOriginal scientific text

Title

Une caractérisation des rétractes absolus de voisinage

Authors 1

Affiliations

  1. 22, Rue Jouvenet F-75016 Paris, Fu

Abstract

We prove that a metric space is an ANR if, and only if, every open subset of X has the homotopy type of a CW-complex.

Bibliography

  1. C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
  2. R. Cauty, Convexité topologique et prolongement des fonctions continues, Compositio Math. 27 (1973), 233-271.
  3. T. tom Dieck, K. H. Kamps und D. Puppe, Homotopietheorie, Lecture Notes in Math. 157, Springer, Berlin, 1970.
  4. C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200-242.
  5. R. Engelking, General Topology, PWN, Warszawa, 1977.
  6. R. Geoghegan, Conjecture 6, in: Proc. Internat. Conf. on Geometric Topology, Warszawa, 1978, Presented Problems, PWN, Warszawa, 1980, p. 463.
  7. R. Geoghegan, Open problems in infinite-dimensional topology, Topology Proc. 4 (1979), 287-338.
  8. J. B. Giever, On the equivalence of two singular homology theories, Ann. of Math. 51 (1950), 178-191.
  9. S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.
  10. G. Kozlowski, Images of ANR's, manuscrit non publié.
  11. A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, 1975.
  12. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
  13. A. Strøm, Note on cofibrations II, Math. Scand. 22 (1968), 130-142.
  14. J. E. West, Open problems in infinite dimensional topology, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), Elsevier, 1990, 524-597.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm144/fm14412.pdf

Pages:
11-22
Main language of publication
French
Received
1992-03-03
Accepted
1993-04-15
Published
1994
Exact and natural sciences