ArticleOriginal scientific text
Title
The dimension of remainders of rim-compact spaces
Authors 1, 1
Affiliations
- Faculty of Technical Mathematics and Informatics, TU Delft, Postbus 5031, 2600 GA Delft, The Netherlands
Abstract
Answering a question of Isbell we show that there exists a rim-compact space X such that every compactification Y of X has dim(Y\X)≥ 1.
Bibliography
- J. M. Aarts and T. Nishiura [1993], Dimension and Extensions, Elsevier, Amsterdam.
- B. Diamond, J. Hatzenbuhler and D. Mattson [1988], On when a 0-space is rimcompact, Topology Proc. 13, 189-202.
- R. Engelking [1989], General Topology, revised and completed edition, Sigma Ser. Pure Math. 6, Heldermann, Berlin.
- J. R. Isbell [1964], Uniform Spaces, Math. Surveys 12, Amer. Math. Soc., Providence, R.I.
- J. Kulesza [1990], An example in the dimension theory of metrizable spaces, Topology Appl. 35, 109-120.
- Yu. M. Smirnov [1958], An example of a completely regular space with zero-dimensional Čech remainder, not having the property of semibicompactness, Dokl. Akad. Nauk SSSR 120, 1204-1206 (in Russian).
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm143/fm14338.pdf