ArticleOriginal scientific text

Title

Movability and limits of polyhedra

Authors 1, 2, 3, 4

Affiliations

  1. Departamento de Matematica Fundamental, Facultad de Ciencias, U.N.E.D., 28040 Madrid, Spain
  2. Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam
  3. Departamento de Matematicas, E.T.S.I. de Montes, Universidad Politecnica, 28040 Madrid, Spain
  4. Departamento de Geometria Y Topologia, Facultad de Matematicas, Universidad Complutense, 28040 Madrid, Spain

Abstract

We define a metric dS, called the shape metric, on the hyperspace 2X of all non-empty compact subsets of a metric space X. Using it we prove that a compactum X in the Hilbert cube is movable if and only if X is the limit of a sequence of polyhedra in the shape metric. This fact is applied to show that the hyperspace (2^2},dS) is separable. On the other hand, we give an example showing that 2^2} is not separable in the fundamental metric introduced by Borsuk.

Bibliography

  1. S. A. Bogatyĭ, Approximative and fundamental retracts, Mat. Sb. 93 (135) (1974), 90-102.
  2. K. Borsuk, On some metrization of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202.
  3. K. Borsuk, Theory of Shape, Monografie Mat. 59, Polish Scientific Publishers, Warszawa, 1975.
  4. K. Borsuk, On a metrization of the hyperspace of a metric space, Fund. Math. 94 (1977), 191-207.
  5. L. Boxer, Hyperspaces where convergence to a calm limit implies eventual shape equivalence, ibid. 115 (1983), 213-222.
  6. L. Boxer and R. B. Sher, Borsuk's fundamental metric and shape domination, Bull. Acad. Polon. Sci. 26 (1978), 849-853.
  7. Z. Čerin, Cp-movably regular convergences, Fund. Math. 119 (1983), 249-268.
  8. Z. Čerin, C-E-movable and (C,D)-E-tame compacta, Houston J. Math. 9 (1983), 9-27.
  9. Z. Čerin and P. Šostak, Some remarks on Borsuk's fundamental metric, in: Á. Császár (ed.), Proc. Colloq. Topology, Budapest, 1978, Colloq. Math. Soc. János Bolyai 23, North-Holland, Amsterdam, 1980, 233-252.
  10. M. H. Clapp, On a generalization of absolute neighbourhood retracts, Fund. Math. 70 (1971), 117-130.
  11. J. Dydak and J. Segal, Theory of Shape : An Introduction, Lecture Notes in Math. 688, Springer, Berlin, 1978.
  12. S. Godlewski, On shape of solenoids, Bull. Acad. Polon. Sci. 17 (1969), 623-627.
  13. L. S. Husch, Intersections of ANR's, Fund. Math. 104 (1979), 21-26.
  14. V. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
  15. S. Mardešić and J. Segal, Shape Theory, North-Holland, 1982.
  16. S. B. Nadler, Hyperspaces of Sets, Dekker, New York, 1978.
  17. H. Noguchi, A generalization of absolute neighbourhood retracts, Kodai Math. Sem. Rep. 1 (1953), 20-22.
  18. S. Spież, Movability and uniform movability, Bull. Acad. Polon. Sci. 22 (1974), 43-45.
  19. J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Springer, Berlin, 1975.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm143/fm14331.pdf

Pages:
191-201
Main language of publication
English
Received
1992-02-18
Accepted
1992-11-19
Published
1993
Exact and natural sciences