ArticleOriginal scientific text

Title

The structure of superilat graphs

Authors 1

Affiliations

  1. Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

We prove a structure theorem asserting that each superflat graph is tree-decomposable in a very nice way. As a consequence we fully determine the spectrum functions of theories of superflat graphs.

Bibliography

  1. J. T. Baldwin, Fundamentals of Stability Theory, Springer, New York, 1985.
  2. J. T. Baldwin and S. Shelah, Second-order quantifiers and the complexity of theories, Notre Dame J. Formal Logic 26 (1985), 229-303.
  3. H. Herre, A. H. Mekler and K. Smith, Superstable graphs, Fund. Math. 118 (1983), 75-79.
  4. E. Hrushovski, Unidimensional theories are superstable, Ann. Pure Appl. Logic 50 (1990), 117-138.
  5. L. F. Low, Superstable trivial theories, preprint.
  6. M. Makkai, A survey of basic stability theory, with particular emphasis on orthogonality and regular types, Israel J. Math. 49 (1984), 181-238.
  7. L. Marcus, The number of countable models of a theory of one unary function, Fund. Math. 108 (1980), 171-181.
  8. E. A. Palyutin and S. S. Starchenko, Horn theories with non-maximal spectra, in: Model Theory and its Applications, Yu. L. Ershov (ed.), Nauka, Novosibirsk, 1988, 108-161.
  9. A. Pillay, Simple superstable theories, in: Classification Theory, J. T. Baldwin (ed.), Lecture Notes in Math. 1292, Springer, Heidelberg, 1987, 247-263.
  10. K. Podewski and M. Ziegler, Stable graphs, Fund. Math. 100 (1978), 101-107.
  11. A. N. Ryaskin, The number of models of complete theories of unars, in: Model Theory and its Applications, Yu. L. Ershov (ed.), Nauka, Novosibirsk, 1988, 162-182 (in Russian).
  12. J. Saffe, The number of uncountable models of ω-stable theories, Ann. Pure Appl. Logic 24 (1983), 231-261.
  13. S. Shelah, Classification Theory and the Number of Non-Isomorphic Models, North-Holland, Amsterdam, 1978.
  14. S. Shelah, On almost categorical theories, in: Classification Theory, J. T. Baldwin (ed.), Lecture Notes in Math. 1292, Springer, Heidelberg, 1987, 498-500.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm143/fm14322.pdf

Pages:
107-117
Main language of publication
English
Received
1992-01-28
Accepted
1993-05-04
Published
1993
Exact and natural sciences