ArticleOriginal scientific text

Title

Lindelöf property and the iterated continuous function spaces

Authors 1

Affiliations

  1. Faculty of Mechanics and Mathematics, Tomsk State University, Pr. Lenina 36, 634010 Tomsk, Russia

Abstract

We give an example of a compact space X whose iterated continuous function spaces Cp(X), CpCp(X),... are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul'ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces Cp(X) on compact scattered spaces with the ω1th derived set empty, improving some earlier results of Pol [12] in this direction.

Bibliography

  1. A. V. Arkhangel'skiĭ, Topological Function Spaces, Moscow Univ. Press, 1989 (in Russian); English transl.: Kluwer Acad. Publ., Dordrecht 1992.
  2. K. Ciesielski and R. Pol, A weakly Lindelöf function space C(K) without any continuous injection into c0(Γ), Bull. Acad. Polon. Sci. 32 (1984), 681-688.
  3. W. G. Fleissner, Applications of stationary sets in topology, in: Surveys in General Topology, Academic Press, 1980, 163-193.
  4. S. P. Gul'ko, On properties of subsets of Σ-products, Dokl. Akad. Nauk SSSR 237 (1977), 505-508 (in Russian); English transl.: Soviet Math. Dokl. 18 (1977), 1438-1442.
  5. S. P. Gul'ko, On properties of some function spaces, Dokl. Akad. Nauk SSSR 243 (1978), 839-842 (in Russian); English transl.: Soviet Math. Dokl. 19 (1978), 1420-1424.
  6. S. P. Gul'ko, On properties of function spaces, in: Seminar on General Topology, Moscow Univ. Press, 1981, 8-41 (in Russian).
  7. T. Jech, Set Theory, Academic Press, New York 1978.
  8. V. I. Malykhin, On the tightness and the Suslin number of exp X and of a product of spaces, Dokl. Akad. Nauk SSSR 203 (1972), 1001-1003 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 496-499.
  9. S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam 1984, 1045-1142.
  10. O. G. Okunev, On the weak topology of conjugate spaces and the t-equivalence relation, Mat. Zametki 46 (1989), 53-59 (in Russian).
  11. Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990.
  12. R. Pol, Concerning function spaces on separable compact spaces, Bull. Acad. Polon. Sci. 25 (1977), 993-997.
  13. R. Pol, A function space C(X) which is weakly Lindelöf but not weakly compactly generated, Studia Math. 64 (1979), 279-284.
  14. Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa 1971.
  15. O. V. Sipachova, The structure of iterated function spaces in the topology of pointwise convergence for Eberlein compacta, Mat. Zametki 47 (1990), 91-99 (in Russian).
  16. G. A. Sokolov, On Lindelöf spaces of continuous functions, ibid. 36 (1986), 887-894 (in Russian).
  17. E. A. Reznichenko, Convex and compact subsets of function spaces and locally convex spaces, Ph.D. thesis, Moscow Univ., 1992 (in Russian).

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm143/fm14317.pdf

Pages:
87-95
Main language of publication
English
Received
1992-12-16
Published
1993
Exact and natural sciences