ArticleOriginal scientific text
Title
Lindelöf property and the iterated continuous function spaces
Authors 1
Affiliations
- Faculty of Mechanics and Mathematics, Tomsk State University, Pr. Lenina 36, 634010 Tomsk, Russia
Abstract
We give an example of a compact space X whose iterated continuous function spaces , are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul'ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces on compact scattered spaces with the th derived set empty, improving some earlier results of Pol [12] in this direction.
Bibliography
- A. V. Arkhangel'skiĭ, Topological Function Spaces, Moscow Univ. Press, 1989 (in Russian); English transl.: Kluwer Acad. Publ., Dordrecht 1992.
- K. Ciesielski and R. Pol, A weakly Lindelöf function space C(K) without any continuous injection into
, Bull. Acad. Polon. Sci. 32 (1984), 681-688. - W. G. Fleissner, Applications of stationary sets in topology, in: Surveys in General Topology, Academic Press, 1980, 163-193.
- S. P. Gul'ko, On properties of subsets of Σ-products, Dokl. Akad. Nauk SSSR 237 (1977), 505-508 (in Russian); English transl.: Soviet Math. Dokl. 18 (1977), 1438-1442.
- S. P. Gul'ko, On properties of some function spaces, Dokl. Akad. Nauk SSSR 243 (1978), 839-842 (in Russian); English transl.: Soviet Math. Dokl. 19 (1978), 1420-1424.
- S. P. Gul'ko, On properties of function spaces, in: Seminar on General Topology, Moscow Univ. Press, 1981, 8-41 (in Russian).
- T. Jech, Set Theory, Academic Press, New York 1978.
- V. I. Malykhin, On the tightness and the Suslin number of exp X and of a product of spaces, Dokl. Akad. Nauk SSSR 203 (1972), 1001-1003 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 496-499.
- S. Negrepontis, Banach spaces and topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam 1984, 1045-1142.
- O. G. Okunev, On the weak topology of conjugate spaces and the t-equivalence relation, Mat. Zametki 46 (1989), 53-59 (in Russian).
- Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990.
- R. Pol, Concerning function spaces on separable compact spaces, Bull. Acad. Polon. Sci. 25 (1977), 993-997.
- R. Pol, A function space C(X) which is weakly Lindelöf but not weakly compactly generated, Studia Math. 64 (1979), 279-284.
- Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa 1971.
- O. V. Sipachova, The structure of iterated function spaces in the topology of pointwise convergence for Eberlein compacta, Mat. Zametki 47 (1990), 91-99 (in Russian).
- G. A. Sokolov, On Lindelöf spaces of continuous functions, ibid. 36 (1986), 887-894 (in Russian).
- E. A. Reznichenko, Convex and compact subsets of function spaces and locally convex spaces, Ph.D. thesis, Moscow Univ., 1992 (in Russian).
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm143/fm14317.pdf