Let ϕ be an arbitrary bijection of $ℝ_+$. We prove that if the two-place function $ϕ^{-1}[ϕ (s)+ϕ (t)]$ is subadditive in $ℝ^2_+$ then $ϕ $ must be a convex homeomorphism of $ℝ_+$. This is a partial converse of Mulholland's inequality. Some new properties of subadditive bijections of $ℝ_+$ are also given. We apply the above results to obtain several converses of Minkowski's inequality.
Institute of Mathematics, Technical University, Al. Politechniki 11, 90-924 Łódź, Poland
Bibliografia
[1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York 1966.
[2] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers and Silesian University, Warszawa-Kraków-Katowice 1985.
[3] J. Matkowski, The converse of the Minkowski's inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), 663-675.
[4] J. Matkowski and T. Świątkowski, Quasi-monotonicity, subadditive bijections of $ℝ_+$, and characterization of $L^p$-norm, J. Math. Anal. Appl. 154 (1991), 493-506.
[5] J. Matkowski and T. Świątkowski, On subadditive functions, Proc. Amer. Math. Soc., to appear.
[6] H. P. Mulholland, On generalizations of Minkowski's inequality in the form of a triangle inequality, Proc. London Math. Soc. 51 (1950), 294-307.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv143i1p75bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.