PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1993 | 143 | 1 | 55-74
Tytuł artykułu

On generalized Peano and Peano derivatives

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A function F is said to have a generalized Peano derivative at x if F is continuous in a neighborhood of x and if there exists a positive integer q such that a qth primitive of F in the neighborhood has the (q+n)th Peano derivative at x; in this case the latter is called the generalized nth Peano derivative of F at x and denoted by $F_{[n]}(x)$. We show that generalized Peano derivatives belong to the class [Δ']. Also we show that they are path derivatives with a nonporous system of paths satisfying the I.I.C. condition as defined in [3]. This gives a new approach to studying generalized Peano and Peano derivatives since all their known properties can be obtained from the corresponding properties of path derivatives. Moreover, generalized Peano derivatives are selective derivatives.
Słowa kluczowe
Rocznik
Tom
143
Numer
1
Strony
55-74
Opis fizyczny
Daty
wydano
1993
otrzymano
1992-08-10
Twórcy
autor
  • Department of Mathematics, California State University, San Bernardino, California 92407, U.S.A.
Bibliografia
  • [1] S. Agronsky, R. Biskner, A. Bruckner and J. Mařík, Representations of functions by derivatives, Trans. Amer. Math. Soc. 263 (1981), 493-500.
  • [2] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, Berlin 1978.
  • [3] A.M. Bruckner, R.J. O'Malley and B.S. Thomson, Path derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc. 283 (1984), 97-125.
  • [4] M. E. Corominas, Contribution à la théorie de la dérivation d'ordre supérieur, Bull. Soc. Math. France 81 (1953), 176-222.
  • [5] A. Denjoy, Sur l'intégration des coefficients différentiels d'ordre supérieur, Fund. Math. 25 (1935), 273-326.
  • [6] H. Fejzić, Decomposition of Peano derivatives, Proc. Amer. Math. Soc., to appear.
  • [7] M. Laczkovich, On the absolute Peano derivatives, Ann. Univ. Sci. Budapest. Eőtvős Sect. Math. 21 (1978), 83-97.
  • [8] C. M. Lee, On absolute Peano derivatives, Real Anal. Exchange 8 (1982-1983), 228-243.
  • [9] C. M. Lee, On generalized Peano derivatives, Trans. Amer. Math. Soc. 275 (1983), 381-396.
  • [10] H. Oliver, The exact Peano derivative, ibid. 76 (1954), 444-456.
  • [11] R. J. O'Malley, Decomposition of approximate derivatives, Proc. Amer. Math. Soc. 69 (1978), 243-247.
  • [12] R. J. O'Malley and C. E. Weil, The oscillatory behavior of certain derivatives, Trans. Amer. Math. Soc. 234 (1977), 467-481.
  • [13] J. Mařík, On generalized derivatives, Real Anal. Exchange 3 (1977-78), 87-92.
  • [14] J. Mařík, Derivatives and closed sets, Acta Math. Hungar. 43 (1-2) (1984), 25-29.
  • [15] S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313-324.
  • [16] C. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376.
  • [17] C. Weil, On approximate and Peano derivatives, Proc. Amer. Math. Soc. 20 (1969), 487-490.
  • [18] C. Weil, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973/74), 527-536.
  • [19] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv143i1p55bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.