ArticleOriginal scientific text

Title

An invariant of bi-Lipschitz maps

Authors 1

Affiliations

  1. Department of Mathematics, Penn State, Altoona Campus Altoona, Pennsylvania 16601-3760, U.S.A.

Abstract

A new numerical invariant for the category of compact metric spaces and Lipschitz maps is introduced. This invariant takes a value less than or equal to 1 for compact metric spaces that are Lipschitz isomorphic to ultrametric ones. Furthermore, a theorem is provided which makes it possible to compute this invariant for a large class of spaces. In particular, by utilizing this invariant, it is shown that neither a fat Cantor set nor the set {0}{1n}n1 is Lipschitz isomorphic to an ultrametric space.

Bibliography

  1. G. Michon, Les cantors réguliers, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 673-675.
  2. G. Michon, Le théorème de Frostman pour les ensembles de Cantor réguliers, ibid. 305 (1987), 265-268.
  3. G. Michon, Applications du théorème de Frostman à la dimension des ensembles de Cantor réguliers, ibid. 305 (1987), 689-692.
  4. D. Sullivan, Differentiable structures on fractal-like sets, determined by intrinsic scaling functions on dual Cantor sets, in: The Mathematical Heritage of Hermann Weyl, R. O. Wells, Jr. (ed.), Proc. Sympos. Pure Math. 48, Amer. Math. Soc., Providence, R.I., 1988, 15-23.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm143/fm14311.pdf

Pages:
1-9
Main language of publication
English
Accepted
1992-11-30
Published
1993
Exact and natural sciences