ArticleOriginal scientific text

Title

A contribution to the topological classification of the spaces Ср(X)

Authors 1, 2, 3

Affiliations

  1. Université Paris VI, Analyse Complexe et Géométrie, 4, Place Jussieu, 75252 Paris Cedex 05, France
  2. Department of Mathematics, The University of Oklahoma, 601 Elm Avenue, Room 423, Norman, Oklahoma 73019-0315, U.S.A.
  3. Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Abstract

We prove that for each countably infinite, regular space X such that Cp(X) is a Zσ-space, the topology of Cp(X) is determined by the class F0(Cp(X)) of spaces embeddable onto closed subsets of Cp(X). We show that Cp(X), whenever Borel, is of an exact multiplicative class; it is homeomorphic to the absorbing set Ωα for the multiplicative Borel class Mα if F0(Cp(X))=Mα. For each ordinal α ≥ 2, we provide an example Xα such that Cp(Xα) is homeomorphic to Ωα.

Keywords

function space, pointwise convergence topology, absorbing sets, Borel and projective filters

Bibliography

  1. C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975.
  2. M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional retracts, Michigan Math. J. 33 (1986), 291-313.
  3. J. Calbrix, Classes de Baire et espaces d'applications continues, C. R. Acad. Sci. Paris 301 (1985), 759-762.
  4. J. Calbrix, Filtres boréliens sur l'ensemble des entiers et espaces des applications continues, Rev. Roumaine Math. Pures Appl. 33 (1988), 655-661.
  5. R. Cauty, L'espace des fonctions continues d'un espace métrique dénombrable, Proc. Amer. Math. Soc. 113 (1991), 493-501.
  6. R. Cauty, Sur deux espaces de fonctions non dérivables, preprint.
  7. R. Cauty, Un exemple d'ensembles absorbants non équivalents, Fund. Math. 140 (1991), 49-61.
  8. R. Cauty, Ensembles absorbants pour les classes projectives, ibid., to appear.
  9. R. Cauty and T. Dobrowolski, Applying coordinate products to the topological identification of normed spaces, Trans. Amer. Math. Soc., to appear.
  10. M. M. Choban, Baire sets in complete topological spaces, Ukrain. Math. Zh. 22 (1970), 330-342 (in Russian).
  11. J. J. Dijkstra, T. Grilliot, D. Lutzer and J. van Mill, Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710.
  12. J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of (lf)ω, Pacific J. Math. 152 (1992), 255-273.
  13. T. Dobrowolski, S. P. Gulko and J. Mogilski, Function spaces homeomorphic to the countable product of l2_f, Topology Appl. 34 (1990), 153-160.
  14. T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324.
  15. T. Dobrowolski and J. Mogilski, Problems on topological classification of incomplete metric spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990, 409-429.
  16. T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235.
  17. R. Engelking, General Topology, PWN, Warszawa 1977.
  18. J. E. Jayne and C. A. Rogers, K-analytic sets, in: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London 1980.
  19. K. Kunen and A. W. Miller, Borel and projective sets from the point of view of compact sets, Math. Proc. Cambridge Philos. Soc. 94 (1983), 399-409.
  20. K. Kuratowski, Topology. I, Academic Press, New York 1966.
  21. L. A. Louveau and J. Saint Raymond, Borel classes and games: Wadge-type and Hurewicz-type results, Trans. Amer. Math. Soc. 304 (1987), 431-467.
  22. D. Lutzer, J. van Mill and R. Pol, Descriptive complexity of function spaces, ibid. 291 (1985), 121-128.
  23. W. Marciszewski, On analytic and coanalytic function spaces Cp(X), Topology Appl., to appear.
  24. J. R. Steel, Analytic sets and Borel isomorphism, Fund. Math. 108 (1980), 83-88.
  25. H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l2-manifolds, ibid. 101 (1978), 93-110.
  26. W. W. Wadge, Ph.D. thesis, Berkeley 1984.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm142/fm14236.pdf

Pages:
269-301
Main language of publication
English
Received
1992-07-02
Accepted
1993-01-20
Published
1993
Exact and natural sciences