ArticleOriginal scientific text
Title
A contribution to the topological classification of the spaces Ср(X)
Authors 1, 2, 3
Affiliations
- Université Paris VI, Analyse Complexe et Géométrie, 4, Place Jussieu, 75252 Paris Cedex 05, France
- Department of Mathematics, The University of Oklahoma, 601 Elm Avenue, Room 423, Norman, Oklahoma 73019-0315, U.S.A.
- Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Abstract
We prove that for each countably infinite, regular space X such that is a -space, the topology of is determined by the class of spaces embeddable onto closed subsets of . We show that , whenever Borel, is of an exact multiplicative class; it is homeomorphic to the absorbing set for the multiplicative Borel class if . For each ordinal α ≥ 2, we provide an example such that is homeomorphic to .
Keywords
function space, pointwise convergence topology, absorbing sets, Borel and projective filters
Bibliography
- C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975.
- M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional retracts, Michigan Math. J. 33 (1986), 291-313.
- J. Calbrix, Classes de Baire et espaces d'applications continues, C. R. Acad. Sci. Paris 301 (1985), 759-762.
- J. Calbrix, Filtres boréliens sur l'ensemble des entiers et espaces des applications continues, Rev. Roumaine Math. Pures Appl. 33 (1988), 655-661.
- R. Cauty, L'espace des fonctions continues d'un espace métrique dénombrable, Proc. Amer. Math. Soc. 113 (1991), 493-501.
- R. Cauty, Sur deux espaces de fonctions non dérivables, preprint.
- R. Cauty, Un exemple d'ensembles absorbants non équivalents, Fund. Math. 140 (1991), 49-61.
- R. Cauty, Ensembles absorbants pour les classes projectives, ibid., to appear.
- R. Cauty and T. Dobrowolski, Applying coordinate products to the topological identification of normed spaces, Trans. Amer. Math. Soc., to appear.
- M. M. Choban, Baire sets in complete topological spaces, Ukrain. Math. Zh. 22 (1970), 330-342 (in Russian).
- J. J. Dijkstra, T. Grilliot, D. Lutzer and J. van Mill, Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710.
- J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of
, Pacific J. Math. 152 (1992), 255-273. - T. Dobrowolski, S. P. Gulko and J. Mogilski, Function spaces homeomorphic to the countable product of
, Topology Appl. 34 (1990), 153-160. - T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324.
- T. Dobrowolski and J. Mogilski, Problems on topological classification of incomplete metric spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990, 409-429.
- T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235.
- R. Engelking, General Topology, PWN, Warszawa 1977.
- J. E. Jayne and C. A. Rogers, K-analytic sets, in: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London 1980.
- K. Kunen and A. W. Miller, Borel and projective sets from the point of view of compact sets, Math. Proc. Cambridge Philos. Soc. 94 (1983), 399-409.
- K. Kuratowski, Topology. I, Academic Press, New York 1966.
- L. A. Louveau and J. Saint Raymond, Borel classes and games: Wadge-type and Hurewicz-type results, Trans. Amer. Math. Soc. 304 (1987), 431-467.
- D. Lutzer, J. van Mill and R. Pol, Descriptive complexity of function spaces, ibid. 291 (1985), 121-128.
- W. Marciszewski, On analytic and coanalytic function spaces
, Topology Appl., to appear. - J. R. Steel, Analytic sets and Borel isomorphism, Fund. Math. 108 (1980), 83-88.
- H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of
-manifolds, ibid. 101 (1978), 93-110. - W. W. Wadge, Ph.D. thesis, Berkeley 1984.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm142/fm14236.pdf