ArticleOriginal scientific text
Title
A triple intersection theorem for the varieties SO(n)/Pd
Authors 1
Affiliations
- Department of Mathematics, Bilkent University, 06533 Ankara, Turkey
Abstract
We study the Schubert calculus on the space of d-dimensional linear subspaces of a smooth n-dimensional quadric lying in the projective space. Following Hodge and Pedoe we develop the intersection theory of this space in a purely combinatorial manner. We prove in particular that if a triple intersection of Schubert cells on this space is nonempty then a certain combinatorial relation holds among the Schubert symbols involved, similar to the classical one. We also show when these necessary conditions are also sufficient to obtain a nontrivial intersection. Several examples are calculated to illustrate the main results.
Bibliography
- E. Artin, Geometric Algebra, Interscience, New York 1988 (c1957).
- I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Schubert cells and the cohomology of G/P spaces, Russian Math. Surveys 28 (1973), 1-26.
- İ. Dibağ, Topology of the complex varieties
, J. Differential Geom. 11 (1976), 499-520. - W. Fulton, Intersection Theory, Springer, 1984.
- P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York 1978.
- H. Hiller and B. Boe, Pieri formulas for
and , Adv. in Math. 62 (1986), 49-67. - W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. II, Cambridge University Press, 1968.
- S. Kleiman and D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061-1082.
- P. Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, in: Topics in Invariant Theory, Séminaire d'Algèbre Dubreil-Malliavin 1989-1990, Lecture Notes in Math. 1478, Springer, 1991, 130-191.
- P. Pragacz, Geometric applications of symmetric polynomials, preprint, Max-Planck Institut für Mathematik, Bonn 1992.
- P. Pragacz and J. Ratajski, Pieri for isotropic Grassmannians: the operator approach, preprint, Max-Planck Institut für Mathematik, Bonn 1992.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm142/fm14231.pdf