ArticleOriginal scientific text

Title

Hyperspaces of Peano continua of euclidean spaces

Authors 1, 1

Affiliations

  1. Faculteit Wiskunde en Informatica, Vrije Universiteit de Boelelaan, 1081a Amsterdam, The Netherlands

Abstract

If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space L(n) is homeomorphic to B, where B denotes the pseudo-boundary of the Hilbert cube Q.

Keywords

Hilbert cube, Hilbert space, absorbing system, Z-set, Fσδ, hyperspace, Peano continuum, n

Bibliography

  1. J. Baars, H. Gladdines, and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl., to appear.
  2. C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975.
  3. M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313.
  4. R. Cauty, L'espace des fonctions continues d'un espace métrique dénombrable, Proc. Amer. Math. Soc. 113 (1991), 493-501.
  5. R. Cauty, L'espace des arcs d'une surface, Trans. Amer. Math. Soc. 332 (1992), 193-209.
  6. D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107.
  7. D. W. Curtis and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math. 101 (1978), 19-38.
  8. J. J. Dijkstra and J. Mogilski, The topological product structure of systems of Lebesgue spaces, Math. Ann. 290 (1991), 527-543.
  9. J. J. Dijkstra, J. van Mill, and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of (l2_f)ω, Pacific J. Math. 152 (1992), 255-273.
  10. T. Dobrowolski, W. Marciszewski, and J. Mogilski, On topological classification of function spaces Cp(X) of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324.
  11. C. Kuratowski, Evaluation de la classe borélienne ou projective d'un ensemble de points à l'aide des symboles logiques, Fund. Math. 17 (1931), 249-272.
  12. S. Mazurkiewicz, Sur l'ensemble des continus péaniens, ibid., 273-274.
  13. S. B. Nadler, Hyperspaces of Sets, Marcel Dekker, New York 1978.
  14. J. van Mill, Infinite-Dimensional Topology: prerequisites and introduction, North- Holland, Amsterdam 1989.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm142/fm14226.pdf

Pages:
173-188
Main language of publication
English
Received
1992-04-07
Published
1993
Exact and natural sciences