ArticleOriginal scientific text

Title

On tame repetitive algebras

Authors 1, 2

Affiliations

  1. Département de Mathématiques et d'Informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1
  2. Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

Let A be a finite dimensional algebra over an algebraically closed field, and denote by T(A) (respectively, Â) the trivial extension of A by its minimal injective cogenerator bimodule (respectively, the repetitive algebra of A). We characterise the algebras A such that  is tame and exhaustive, that is, the push-down functor mod  → mod T(A) associated with the covering functor  → T(A)\nsimto Â/(ν_A)isdense.Weshowt,^ifÂistameandexhaustive,thenAisplycoectedifandonlyifAis¬aniteratedti<edalbraoftypeÂ_m!$!. Then we prove that  is tame and exhaustive if and only if A is tilting-cotilting equivalent to an algebra which is either hereditary of Dynkin or Euclidean type or is tubular canonical.

Bibliography

  1. I. Assem, Tilted algebras of type symAn, Comm. Algebra 10 (1982), 2121-2139.
  2. I. Assem and D. Happel, Generalized tilted algebras of type symAn, ibid. 9 (1981), 2101-2125.
  3. I. Assem, D. Happel and O. Roldán, Representation-finite trivial extension algebras, J. Pure Appl. Algebra 33 (1984), 235-242.
  4. I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72.
  5. I. Assem and A. Skowroński, Iterated tilted algebras of type Ân, Math. Z. 195 (1987), 269-290.
  6. I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. (3) 56 (1988), 417-450.
  7. I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463.
  8. I. Assem and A. Skowroński, Quadratic forms and iterated tilted algebras, J. Algebra 128 (1990), 55-85.
  9. M. Auslander and I. Reiten, Representation theory of artin algebras III, IV, Comm. Algebra 3 (1975), 239-294 and 5 (1977), 443-518.
  10. K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1981/82), 331-378.
  11. S. Brenner and M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 832, Springer, Berlin 1980, 103-169.
  12. O. Bretscher, C. Läser and C. Riedtmann, Self-injective and simply connected algebras, Manuscripta Math. 36 (1981/82), 253-307.
  13. B. Conti, Simply connected algebras of tree-class symAn and n, in: Proc. ICRA IV (Ottawa 1984), Lecture Notes in Math. 1177, Springer, Berlin 1986, 60-90.
  14. V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976).
  15. P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529.
  16. P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
  17. Yu. A. Drozd, Tame and wild matrix problems, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 832, Springer, Berlin 1980, 242-258.
  18. P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, Berlin 1980, 1-71.
  19. P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. ICRA III (Puebla 1980), Lecture Notes in Math. 903, Springer, Berlin 1981, 68-105.
  20. D. Happel, Tilting sets on cylinders, Proc. London Math. Soc. (3) 51 (1985), 21-55.
  21. D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), 339-389.
  22. D. Happel, J. Rickard and A. Schofield, Piecewise hereditary algebras, Bull. London Math. Soc. 20 (1988), 23-28.
  23. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. ath. Soc. 274 (1982), 399-443.
  24. D. Happel and C. M. Ringel, Construction of tilted algebras, in: Proc. ICRA III (Puebla 1980), Lecture Notes in Math. 903, Springer, Berlin 1981, 125-144.
  25. D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Proc. ICRA IV (Ottawa 1984), Lecture Notes in ath. 1177, Springer, Berlin 1986, 156-180.
  26. D. Happel and D. Vossieck, inimal algebras of infinite representation type with preprojective component, Manuscripta ath. 42 (1983), 221-243.
  27. D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), 347-364.
  28. R. Martínez-Villa and J. A. de la Pe na, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (1983), 277-292.
  29. J. Nehring, Polynomial growth trivial extensions of non-simply connected algebras, Bull. Polish Acad. Sci. 36 (1988), 441-445.
  30. J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134.
  31. C. M. Ringel, Tame algebras, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, Berlin 1980, 137-287.
  32. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin 1984.
  33. C. M. Ringel, Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proc. Durham 1985, Cambridge University Press, 1986, 7-80.
  34. O. Roldán, Tilted algebras of type ws~ymAn, ws~ymBn, ws~ymCn and ws~ymBsymCn, Ph.D. thesis, Carleton University, 1983.
  35. A. Skowroński, Generalization of Yamagata's theorem on trivial extensions, Arch. Math. (Basel) 48 (1987), 68-76.
  36. A. Skowroński, On algebras of finite strong global dimension, Bull. Polish Acad. Sci. 35 (1987), 539-547.
  37. A. Skowroński, Group algebras of polynomial growth, anuscripta Math. 59 (1987), 499-516.
  38. A. Skowroński, Selfinjective algebras of polynomial growth, ath. Ann. 285 (1989), 177-199.
  39. A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa 1990, 535-568.
  40. A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172-181.
  41. H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165.
  42. H. Tachikawa and T. Wakamatsu, Applications of reflection functors for selfinjective algebras, in: Proc. ICRA IV (Ottawa 1984), Lecture Notes in Math. 1177, Springer, Berlin 1986, 308-327.
  43. J. L. Verdier, Catégories dérivées, état 0, in: SGA 4 1/2, Lecture Notes in Math. 569, Springer, Berlin 1977, 262-311.
  44. T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316.
Pages:
59-84
Main language of publication
English
Received
1991-09-30
Accepted
1992-06-03
Published
1993
Exact and natural sciences