Download PDF - On tame repetitive algebras
ArticleOriginal scientific text
Title
On tame repetitive algebras
Authors 1, 2
Affiliations
- Département de Mathématiques et d'Informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1
- Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Abstract
Let A be a finite dimensional algebra over an algebraically closed field, and denote by T(A) (respectively, Â) the trivial extension of A by its minimal injective cogenerator bimodule (respectively, the repetitive algebra of A). We characterise the algebras A such that  is tame and exhaustive, that is, the push-down functor mod  → mod T(A) associated with the covering functor  → T(A)\nsimto Â/(ν_A) Â_m!$!. Then we prove that  is tame and exhaustive if and only if A is tilting-cotilting equivalent to an algebra which is either hereditary of Dynkin or Euclidean type or is tubular canonical.
Bibliography
- I. Assem, Tilted algebras of type
, Comm. Algebra 10 (1982), 2121-2139. - I. Assem and D. Happel, Generalized tilted algebras of type
, ibid. 9 (1981), 2101-2125. - I. Assem, D. Happel and O. Roldán, Representation-finite trivial extension algebras, J. Pure Appl. Algebra 33 (1984), 235-242.
- I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72.
- I. Assem and A. Skowroński, Iterated tilted algebras of type
, Math. Z. 195 (1987), 269-290. - I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. (3) 56 (1988), 417-450.
- I. Assem and A. Skowroński, Algebras with cycle-finite derived categories, Math. Ann. 280 (1988), 441-463.
- I. Assem and A. Skowroński, Quadratic forms and iterated tilted algebras, J. Algebra 128 (1990), 55-85.
- M. Auslander and I. Reiten, Representation theory of artin algebras III, IV, Comm. Algebra 3 (1975), 239-294 and 5 (1977), 443-518.
- K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1981/82), 331-378.
- S. Brenner and M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 832, Springer, Berlin 1980, 103-169.
- O. Bretscher, C. Läser and C. Riedtmann, Self-injective and simply connected algebras, Manuscripta Math. 36 (1981/82), 253-307.
- B. Conti, Simply connected algebras of tree-class
and , in: Proc. ICRA IV (Ottawa 1984), Lecture Notes in Math. 1177, Springer, Berlin 1986, 60-90. - V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 173 (1976).
- P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), 522-529.
- P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
- Yu. A. Drozd, Tame and wild matrix problems, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 832, Springer, Berlin 1980, 242-258.
- P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, Berlin 1980, 1-71.
- P. Gabriel, The universal cover of a representation-finite algebra, in: Proc. ICRA III (Puebla 1980), Lecture Notes in Math. 903, Springer, Berlin 1981, 68-105.
- D. Happel, Tilting sets on cylinders, Proc. London Math. Soc. (3) 51 (1985), 21-55.
- D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), 339-389.
- D. Happel, J. Rickard and A. Schofield, Piecewise hereditary algebras, Bull. London Math. Soc. 20 (1988), 23-28.
- D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. ath. Soc. 274 (1982), 399-443.
- D. Happel and C. M. Ringel, Construction of tilted algebras, in: Proc. ICRA III (Puebla 1980), Lecture Notes in Math. 903, Springer, Berlin 1981, 125-144.
- D. Happel and C. M. Ringel, The derived category of a tubular algebra, in: Proc. ICRA IV (Ottawa 1984), Lecture Notes in ath. 1177, Springer, Berlin 1986, 156-180.
- D. Happel and D. Vossieck, inimal algebras of infinite representation type with preprojective component, Manuscripta ath. 42 (1983), 221-243.
- D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. (3) 46 (1983), 347-364.
- R. Martínez-Villa and J. A. de la Pe na, The universal cover of a quiver with relations, J. Pure Appl. Algebra 30 (1983), 277-292.
- J. Nehring, Polynomial growth trivial extensions of non-simply connected algebras, Bull. Polish Acad. Sci. 36 (1988), 441-445.
- J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134.
- C. M. Ringel, Tame algebras, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, Berlin 1980, 137-287.
- C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin 1984.
- C. M. Ringel, Representation theory of finite-dimensional algebras, in: Representations of Algebras, Proc. Durham 1985, Cambridge University Press, 1986, 7-80.
- O. Roldán, Tilted algebras of type
, , and , Ph.D. thesis, Carleton University, 1983. - A. Skowroński, Generalization of Yamagata's theorem on trivial extensions, Arch. Math. (Basel) 48 (1987), 68-76.
- A. Skowroński, On algebras of finite strong global dimension, Bull. Polish Acad. Sci. 35 (1987), 539-547.
- A. Skowroński, Group algebras of polynomial growth, anuscripta Math. 59 (1987), 499-516.
- A. Skowroński, Selfinjective algebras of polynomial growth, ath. Ann. 285 (1989), 177-199.
- A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa 1990, 535-568.
- A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345 (1983), 172-181.
- H. Tachikawa and T. Wakamatsu, Tilting functors and stable equivalences for selfinjective algebras, J. Algebra 109 (1987), 138-165.
- H. Tachikawa and T. Wakamatsu, Applications of reflection functors for selfinjective algebras, in: Proc. ICRA IV (Ottawa 1984), Lecture Notes in Math. 1177, Springer, Berlin 1986, 308-327.
- J. L. Verdier, Catégories dérivées, état 0, in: SGA 4 1/2, Lecture Notes in Math. 569, Springer, Berlin 1977, 262-311.
- T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299-316.