ArticleOriginal scientific text
Title
Two-to-one maps on solenoids and Knaster continua
Authors 1
Affiliations
- Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
Abstract
It is shown that 2-to-1 maps cannot be defined on certain solenoids, in particular on the dyadic solenoid, and on Knaster continua.
Bibliography
- P. Civin, Two-to-one mappings of manifolds, Duke Math. J. 10 (1943), 49-57.
- A. V. Chernavskiĭ, The impossibility of a strictly double continuous partition of the homologous cube, Dokl. Akad. Nauk SSSR 144 (1962), 286-289 (in Russian).
- S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, 1952.
- V. B. Fugate and T. B. McLean, Compact groups of homeomorphisms on tree-like continua, Trans. Amer. Math. Soc. 267 (1981), 609-620.
- O. G. Harrold, The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789-793.
- J. Heath, Tree-like continua and exactly k-to-1 functions, Proc. Amer. Math. Soc. 105 (1989), 765-772.
- E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. I, Springer, 1963.
- J. Mioduszewski, On two-to-one continuous functions, Dissertationes Math. (Rozprawy Mat.) 24 (1961).
- L. Pontryagin, Topological Groups, Gordon and Breach, New York 1966.
- I. Rosenholtz, Open maps of chainable continua, Proc. Amer. Math. Soc. 42 (1974), 258-264.
- W. Scheffer, Maps between topological groups that are homotopic to homomorphisms, ibid. 33 (1972), 562-567.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm141/fm14137.pdf