ArticleOriginal scientific text

Title

Topological spaces admitting a unique fractal structure

Authors 1, 2

Affiliations

  1. Mathematics Department, Addis Ababa University D-O-2200 Greifswald, P.O. Box 1176, Addis Ababa, Ethiopia
  2. Fachbereich Mathematik, Ernst-Moritz-Arndt-Universität, Germany

Abstract

Each homeomorphism from the n-dimensional Sierpiński gasket into itself is a similarity map with respect to the usual metrization. Moreover, the topology of this space determines a kind of Haar measure and a canonical metric. We study spaces with similar properties. It turns out that in many cases, "fractal structure" is not a metric but a topological phenomenon.

Bibliography

  1. C. Bandt and K. Keller, Self-similar sets 2. A simple approach to the topological structure of fractals, Math. Nachr. 154 (1991), 27-39.
  2. C. Bandt and K. Keller, Symbolic dynamics for angle-doubling on the circle I. The topology of locally connected Julia sets, in: U. Krengel, K. Richter and V. Warstat (eds.), Ergodic Theory and Related Topics III, Lecture Notes in Math. 1514, Springer, 1992, 1-23.
  3. C. Bandt and T. Kuschel, Self-similar sets 8. Average interior distance in some fractals, Proc. Measure Theory Conference, Oberwolfach 1990, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 307-317.
  4. C. Bandt and T. Retta, Self-similar sets as inverse limits of finite topological spaces, in: C. Bandt, J. Flachsmeyer and H. Haase (eds.), Topology, Measures and Fractals, Akademie-Verlag, Berlin 1992, 41-46.
  5. C. Bandt and J. Stahnke, Self-similar sets. 6. Interior distance on deterministic fractals, preprint, Greifswald 1990.
  6. M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), 543-623.
  7. P. F. Duvall, J. W. Emert and L. S. Husch, Iterated function systems, compact semigroups and topological contractions, preprint, University of North Carolina, 1990.
  8. K. J. Falconer, Fractal Geometry, Wiley, 1990.
  9. J. de Groot, Groups represented as homeomorphism groups I, Math. Ann. 138 (1959), 80-102.
  10. M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (2) (1985), 381-414.
  11. A. Hinz and A. Schief, The average distance on the Sierpiński gasket, Probab. Theory Related Fields 87 (1990), 129-138.
  12. V. Kannan and M. Rajagopalan, Constructions and applications of rigid spaces, I, Adv. in Math. 29 (1978), 89-130; II, Amer. J. Math. 100 (1978), 1139-1172.
  13. J. Kigami, A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math. 6 (2) (1989), 259-290.
  14. J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc., to appear.
  15. K. Kuratowski, Topology, Vol. 2, Polish Scientific Publishers and Academic Press, 1968.
  16. T. Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 83 (1990).
  17. C. Penrose, On quotients of the shift associate with dendritic Julia sets of quadratic polynomials, Ph.D. thesis, University of Warwick, 1990.
  18. W. Rinow, Die innere Geometrie der metrischen Räume, Grundlehren Math. Wiss. 105, Springer, 1961.
  19. W. P. Thurston, On the combinatorics and dynamics of iterated rational maps, preprint, Princeton 1985.
  20. W. Dębski and J. Mioduszewski, simple plane images of the Sierpiński triangular curve are nowhere dense}, Colloq. Math. 59 (1990), 125-140.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm141/fm14135.pdf

Pages:
257-268
Main language of publication
English
Received
1991-11-11
Accepted
1992-03-17
Published
1992
Exact and natural sciences