ArticleOriginal scientific text
Title
Algebras of Borel measurable functions
Authors 1, 2
Affiliations
- Institute of Mathematics, Uniwersity of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
Abstract
We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.
Bibliography
- [CM] J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83-89.
- [CMPS] J. Cichoń, M. Morayne, J. Pawlikowski and S. Solecki, Decomposing Baire functions, J. Symbolic Logic 56 (1991), 1273-1283.
- [H] F. Hausdorff, Set Theory, Chelsea, New York 1962.
- [Ke] S. Kempisty, Sur les séries itérées des fonctions continues, Fund. Math. 2 (1921), 64-73.
- [Ku] K. Kuratowski, Topology I, Academic Press, New York 1966.
- [L] A. Lindenbaum, Sur les superpositions de fonctions represéntables analytiquement, Fund. Math. 23 (1934), 15-37; Corrections, ibid., 304.
- [Ma] R. D. Mauldin, On the Baire system generated by a linear lattice of functions, ibid. 68 (1970), 51-59.
- [Mo] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam 1980.
- [S1] W. Sierpiński, Sur les fonctions développables en séries absolument convergentes de fonctions continues, Fund. Math. 2 (1921), 15-27.
- [S2] W. Sierpiński, Démonstration d'un théorème sur les fonctions de première classe, ibid., 37-40.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm141/fm14133.pdf