We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.
Institute of Mathematics, Pedagogical University (WSP), Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Bibliografia
[1] N. L. Alling and N. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes in Math. 219, Springer, 1971.
[2] E. Bujalance, Proper periods of normal NEC subgroups with even index, Rev. Math. Hisp.-Amer. 41 (4) (1981), 121-127.
[3] E. Bujalance, Normal subgroups of NEC groups, Math. Z. 178 (1981), 331-341.
[4] E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphism Groups of Compact Bordered Klein Surfaces, Lecture Notes in Math. 1439, Springer, 1990.
[5] E. Bujalance and G. Gromadzki, On nilpotent groups of automorphisms of compact Klein surfaces, Proc. Amer. Math. Soc. 108 (3) (1990), 749-759.
[6] B. P. Chetiya, Groups of automorphisms of compact Riemann surfaces, Ph.D. thesis, Birmingham University, 1981.
[7] B. P. Chetiya, On genuses of compact Riemann surfaces admitting solvable automorphism groups, Indian J. Pure Appl. Math. 12 (1981), 1312-1318.
[8] B. P. Chetiya and K. Patra, On metabelian groups of automorphisms of compact Riemann surfaces, J. London Math. Soc. 33 (1986), 467-472.
[9] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 3rd ed., Ergeb. Math. Grenzgeb. 14, Springer, Berlin 1972.
[10] N. Greenleaf and C. L. May, Bordered Klein surfaces with maximal symmetry, Trans. Amer. Math. Soc. 274 (1982), 265-283.
[11] G. Gromadzki, On soluble groups of automorphisms of Riemann surfaces, Canad. Math. Bull. 34 (1) (1991), 67-73.
[12] A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1893), 403-442.
[13] A. M. Macbeath, The classification of non-euclidean plane crystallographic groups, Canad. J. Math. 19 (1967), 1192-1205.
[14] C. L. May, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math. 59 (1975). 199-210.
[15] C. L. May, Large automorphism groups of compact Klein surfaces with boundary I, Glasgow Math. J. 18 (1977), 1-10.
[16] C. L. May, The species of Klein surfaces with maximal symmetry of low genus, Pacific J. Math. 111 (2) (1984), 371-394.
[17] C. L. May, Supersolvable M*-groups, Glasgow Math. J. 30 (1988), 31-40.
[18] K. Oikawa, Note on conformal mappings of a Riemann surface onto itself, Kodai Math. Sem. Rep. 8 (1956), 23-30.
[19] R. Preston, Projective structures and fundamental domains on compact Klein surfaces, Ph.D. thesis, Univ. of Texas, 1975.
[20] D. Singerman, Automorphisms of compact non-orientable Riemann surfaces, Glasgow Math. J. 12 (1971), 50-59.
[21] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974), 233-240.
[22] D. Singerman, Orientable and non-orientable Klein surfaces with maximal symmetry, Glasgow Math. J. 26 (1985), 31-34.
[23] M. C. Wilkie, On non-euclidean crystallographic groups, Math. Z. 91 (1966), 87-102.