Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, motivated by questions in Harmonic Analysis, we study the operation of (countable) increasing union, and show it is not idempotent: $ω_1$ iterations are needed in general to obtain the closure of a class under this operation. Increasing union is a particular Hausdorff operation, and we present the combinatorial tools which allow to study the power of various Hausdorff operations, and of their iterates. Besides countable increasing union, we study in detail a related Hausdorff operation, which preserves compactness.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
169-194
Opis fizyczny
Daty
wydano
1992
otrzymano
1991-09-09
poprawiono
1992-03-10
Twórcy
autor
- Equipe d'Analyse, Université Paris 6, 4, Place Jussieu, 75252 Paris Cedex 05, France
Bibliografia
- [1] B. Aniszczyk, J. Burzyk and A. Kamiński, Borel and monotone hierarchies and extension of Rényi probability spaces, Colloq. Math. 51 (1987), 11-25.
- [2] J. Arbault, Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France 80 (1952), 253-317.
- [3] H. Becker, S. Kahane and A. Louveau, Natural complete $Σ_2^1$-sets in Harmonic Analysis, Trans. Amer. Math. Soc., to appear.
- [4] G. Choquet, Sur les notions de filtre et de grille, C. R. Acad. Sci. Paris 224 (1947), 171-173.
- [5] S. Kahane, Ensembles de convergence absolue, ensembles de Dirichlet faibles et ↑-idéaux, ibid. 310 (1990), 335-337.
- [6] S. Kahane, ↑-idéaux de compacts et applications à l'analyse harmonique, Thèse, Univ. Paris 6, 1990.
- [7] S. Kahane, Antistable classes of thin sets in Harmonic Analysis, Illinois J. Math., to appear.
- [8] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets,Trans. Amer. Math. Soc. 301 (1987), 263-288.
- [9] K. Kuratows, Topology I, Acad. Press, New York 1966.
- [10] H. Lebesgue, Sur les fonctions représentables analytiquement, J. Math. Pures Appl. (6) 1 (1905), 139-216.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv141i2p169bwm