ArticleOriginal scientific text

Title

Opérations de Hausdorff itérées et réunions croissantes de compacts

Authors 1

Affiliations

  1. Equipe d'Analyse, Université Paris 6, 4, Place Jussieu, 75252 Paris Cedex 05, France

Abstract

In this paper, motivated by questions in Harmonic Analysis, we study the operation of (countable) increasing union, and show it is not idempotent: ω1 iterations are needed in general to obtain the closure of a class under this operation. Increasing union is a particular Hausdorff operation, and we present the combinatorial tools which allow to study the power of various Hausdorff operations, and of their iterates. Besides countable increasing union, we study in detail a related Hausdorff operation, which preserves compactness.

Bibliography

  1. B. Aniszczyk, J. Burzyk and A. Kamiński, Borel and monotone hierarchies and extension of Rényi probability spaces, Colloq. Math. 51 (1987), 11-25.
  2. J. Arbault, Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France 80 (1952), 253-317.
  3. H. Becker, S. Kahane and A. Louveau, Natural complete Σ21-sets in Harmonic Analysis, Trans. Amer. Math. Soc., to appear.
  4. G. Choquet, Sur les notions de filtre et de grille, C. R. Acad. Sci. Paris 224 (1947), 171-173.
  5. S. Kahane, Ensembles de convergence absolue, ensembles de Dirichlet faibles et ↑-idéaux, ibid. 310 (1990), 335-337.
  6. S. Kahane, ↑-idéaux de compacts et applications à l'analyse harmonique, Thèse, Univ. Paris 6, 1990.
  7. S. Kahane, Antistable classes of thin sets in Harmonic Analysis, Illinois J. Math., to appear.
  8. A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets,Trans. Amer. Math. Soc. 301 (1987), 263-288.
  9. K. Kuratows, Topology I, Acad. Press, New York 1966.
  10. H. Lebesgue, Sur les fonctions représentables analytiquement, J. Math. Pures Appl. (6) 1 (1905), 139-216.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm141/fm14125.pdf

Pages:
169-194
Main language of publication
French
Received
1991-09-09
Accepted
1992-03-10
Published
1992
Exact and natural sciences