Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We show that the Vietoris system of a space is isomorphic to a strong expansion of that space in the Steenrod homotopy category, and from this we derive a simple description of strong homology. It is proved that in ZFC strong homology does not have compact supports, and that enforcing compact supports by taking limits leads to a homology functor that does not factor over the strong shape category. For compact Hausdorff spaces strong homology is proved to be isomorphic to Massey's homology.
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
147-168
Opis fizyczny
Daty
wydano
1992
otrzymano
1991-08-12
Twórcy
autor
- Fachbereich Mathematik, Johann Wolfgang Goethe-Universität, Robert-Mayer-Strasse, 6-10 6000 Frankfurt, Germany
Bibliografia
- [1] R. A. Alo and H. L. Shapiro, Normal Topological Spaces, Cambridge Tracts in Math. 65, Cambridge University Press, 1974.
- [2] N. A. Berikashvili, Steenrod-Sitnikov homology theories on the category of compact spaces, Soviet Math. Dokl. 22 (1980), 544-547.
- [3] N. A. Berikashvili, On the axiomatics of Steenrod-Sitnikov homology theory on the category of compact Hausdorff spaces, Proc. Steklov Inst. Math. 4 (1984), 25-39.
- [4] F. W. Cathey and J. Segal, Strong shape theory and resolutions, Topology Appl. 15 (1983), 119-130.
- [5] C. H. Dowker, Homotopy groups of relations, Ann. of Math. 56 (1952), 84-95.
- [6] D. A. Edwards and H. M. Hastings, Čech and Steenrod Homotopy Theories with Applications to Geometric Topology, Lecture Notes in Math. 542, Springer, 1976.
- [7] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin 1989.
- [8] B. Günther, Comparison of the coherent pro-homotopy theories of Edwards-Hastings, Lisica-Mardešić and Günther, Glas. Mat., to appear.
- [9] B. Günther, Properties of normal embeddings concerning strong shape theory, II, Tsukuba J. Math., to appear.
- [10] Ju. T. Lisica and S. Mardešić, Coherent prohomotopy and strong shape theory, Glas. Mat. 19 (39) (1984), 335-399.
- [11] Ju. T. Lisica and S. Mardešić, Strong homology of inverse systems of spaces, I, Topology Appl. 19 (1985), 29-43.
- [12] Ju. T. Lisica and S. Mardešić, Strong homology of inverse systems of spaces, II, ibid., 45-64.
- [13] Ju. T. Lisica and S. Mardešić, Strong homology of inverse systems of spaces, III, ibid. 20 (1985), 29-37.
- [14] S. Mardešić, Resolutions of spaces are strong expansions, Publ. Inst. Math. (Beograd) 49 (63) (1991), 179-188.
- [15] S. Mardešić, Strong expansions and strong shape theory, Topology Appl. 38 (1991), 275-291.
- [16] S. Mardešić and Z. Miminoshvili, The relative homeomorphism and the wedge axioms for strong homology, Glas. Mat., to appear.
- [17] S. Mardešić and A. V. Prasolov, Strong homology is not additive, Trans. Amer. Math. Soc. 307 (1988), 725-744.
- [18] S. Mardešić and J. Segal, Shape Theory, Math. Library 26, North-Holland, 1982.
- [19] S. Mardešić and T. Watanabe, Strong homology and dimension, Topology Appl. 29 (1988), 185-205.
- [20] W. S. Massey, Homology and Cohomology Theory, Pure and Appl. Math. 46, Marcel Dekker, 1978.
- [21] E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173-176.
- [22] Z. Miminoshvili, On the sequences of exact and half-exact homologies of arbitrary spaces, Soobshch. Akad. Nauk Gruzin. SSR 113 (1) (1984), 41-44 (in Russian).
- [23] T. Porter, Čech homotopy, I, J. London Math. Soc. (2) 6 (1973), 429-436.
- [24] T. Porter, Čech homotopy, II, ibid., 662-675.
- [25] T. Porter, Čech homotopy, III, Bull. London Math. Soc. 6 (1974), 307-311.
- [26] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv141i2p147bwm