ArticleOriginal scientific text
Title
The Vietoris system in strong shape and strong homology
Authors 1
Affiliations
- Fachbereich Mathematik, Johann Wolfgang Goethe-Universität, Robert-Mayer-Strasse, 6-10 6000 Frankfurt, Germany
Abstract
We show that the Vietoris system of a space is isomorphic to a strong expansion of that space in the Steenrod homotopy category, and from this we derive a simple description of strong homology. It is proved that in ZFC strong homology does not have compact supports, and that enforcing compact supports by taking limits leads to a homology functor that does not factor over the strong shape category. For compact Hausdorff spaces strong homology is proved to be isomorphic to Massey's homology.
Keywords
vietoris nerve, Steenrod homotopy category, strong shape theory, strong homology, compact supports
Bibliography
- R. A. Alo and H. L. Shapiro, Normal Topological Spaces, Cambridge Tracts in Math. 65, Cambridge University Press, 1974.
- N. A. Berikashvili, Steenrod-Sitnikov homology theories on the category of compact spaces, Soviet Math. Dokl. 22 (1980), 544-547.
- N. A. Berikashvili, On the axiomatics of Steenrod-Sitnikov homology theory on the category of compact Hausdorff spaces, Proc. Steklov Inst. Math. 4 (1984), 25-39.
- F. W. Cathey and J. Segal, Strong shape theory and resolutions, Topology Appl. 15 (1983), 119-130.
- C. H. Dowker, Homotopy groups of relations, Ann. of Math. 56 (1952), 84-95.
- D. A. Edwards and H. M. Hastings, Čech and Steenrod Homotopy Theories with Applications to Geometric Topology, Lecture Notes in Math. 542, Springer, 1976.
- R. Engelking, General Topology, 2nd ed., Heldermann, Berlin 1989.
- B. Günther, Comparison of the coherent pro-homotopy theories of Edwards-Hastings, Lisica-Mardešić and Günther, Glas. Mat., to appear.
- B. Günther, Properties of normal embeddings concerning strong shape theory, II, Tsukuba J. Math., to appear.
- Ju. T. Lisica and S. Mardešić, Coherent prohomotopy and strong shape theory, Glas. Mat. 19 (39) (1984), 335-399.
- Ju. T. Lisica and S. Mardešić, Strong homology of inverse systems of spaces, I, Topology Appl. 19 (1985), 29-43.
- Ju. T. Lisica and S. Mardešić, Strong homology of inverse systems of spaces, II, ibid., 45-64.
- Ju. T. Lisica and S. Mardešić, Strong homology of inverse systems of spaces, III, ibid. 20 (1985), 29-37.
- S. Mardešić, Resolutions of spaces are strong expansions, Publ. Inst. Math. (Beograd) 49 (63) (1991), 179-188.
- S. Mardešić, Strong expansions and strong shape theory, Topology Appl. 38 (1991), 275-291.
- S. Mardešić and Z. Miminoshvili, The relative homeomorphism and the wedge axioms for strong homology, Glas. Mat., to appear.
- S. Mardešić and A. V. Prasolov, Strong homology is not additive, Trans. Amer. Math. Soc. 307 (1988), 725-744.
- S. Mardešić and J. Segal, Shape Theory, Math. Library 26, North-Holland, 1982.
- S. Mardešić and T. Watanabe, Strong homology and dimension, Topology Appl. 29 (1988), 185-205.
- W. S. Massey, Homology and Cohomology Theory, Pure and Appl. Math. 46, Marcel Dekker, 1978.
- E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173-176.
- Z. Miminoshvili, On the sequences of exact and half-exact homologies of arbitrary spaces, Soobshch. Akad. Nauk Gruzin. SSR 113 (1) (1984), 41-44 (in Russian).
- T. Porter, Čech homotopy, I, J. London Math. Soc. (2) 6 (1973), 429-436.
- T. Porter, Čech homotopy, II, ibid., 662-675.
- T. Porter, Čech homotopy, III, Bull. London Math. Soc. 6 (1974), 307-311.
- E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm141/fm14124.pdf