ArticleOriginal scientific text

Title

Open subspaces of countable dense homogeneous spaces

Authors 1, 2

Affiliations

  1. Department of Mathematics, York University, North York, Ontario, Canada M3J 1P3
  2. >Matematický Ústav, University Karlov, Sokolovská 83, 18 600 Praha 8, Czechoslovakia

Abstract

We construct a completely regular space which is connected, locally connected and countable dense homogeneous but not strongly locally homogeneous. The space has an open subset which has a unique cut-point. We use the construction of a C1-diffeomorphism of the plane which takes one countable dense set to another.

Bibliography

  1. L. V. Ahlfors, Complex Analysis, McGraw-Hill, New York 1953.
  2. R. D. Anderson, D. W. Curtis and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), 311-321.
  3. J. W. Bales, Representable and strongly locally homogeneous spaces and strongly n-homogeneous spaces, Houston J. Math. 2 (1976), 315-327.
  4. K. F. Barth and W. J. Schneider, Entire functions mapping arbitrary countable dense sets and their complements onto each other, J. London Math. Soc. 4 (1971/72), 482-488.
  5. K. F. Barth and W. J. Schneider, Entire functions mapping countable dense subsets of the reals onto each other monotonically, ibid. 2 (1970), 620-626.
  6. R. Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), 189-194.
  7. R. B. Burckel and S. Saeki, Additive mappings on rings of holomorphic functions, Proc. Amer. Math. Soc. 89 (1983), 79-85.
  8. G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre, Math. Ann. 46 (1895), 481-512.
  9. J. de Groot, Topological Hilbert space and the drop-out effect, Technical Report zw-1969, Math. Centrum, Amsterdam 1969.
  10. T. Dobrowolski, On smooth countable dense homogeneity, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 627-634.
  11. C. Eberhart, Some remarks on the irrational and rational numbers, Amer. Math. Monthly 84 (1977), 32-35.
  12. P. Erdős, Problem 2.31, in: Research Problems in Function Theory, W. K. Haymann (ed.), Athlone Press, London 1967.
  13. P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.
  14. B. Fitzpatrick, Jr., A note on countable dense homogeneity, Fund. Math. 75 (1972), 33-34.
  15. B. Fitzpatrick, Jr., and H.-X. Zhou, Densely homogeneous spaces (II), Houston J. Math. 14 (1988), 57-68.
  16. B. Fitzpatrick, Some open problems in densely homogeneous spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990, 251-259.
  17. B. Fitzpatrick, Jr., and N. F. Lauer, Densely homogeneous spaces (I), Houston J. Math. 13 (1987), 19-25.
  18. P. Fletcher and R. A. McCoy, Conditions under which a connected representable space is locally connected, Pacific J. Math. 51 (1974), 433-437.
  19. L. R. Ford, Jr., Homeomorphism groups and coset spaces, Trans. Amer. Math. Soc. 77 (1954), 490-497.
  20. M. K. Fort, Jr., Homogeneity of infinite products of manifolds with boundary, Pacific J. Math. 12 (1962), 879-884.
  21. P. Franklin, Analytic transformations of everywhere dense point sets, Trans. Amer. Math. Soc. 27 (1925), 91-100.
  22. F. Gross, Research problem 19, Bull. Amer. Math. Soc. 71 (1965), 853.
  23. F. D. Hammer and W. Knight, Problem and solution 5955, Amer. Math. Monthly 82 (1975), 415-416.
  24. K. Kuperberg, W. Kuperberg and W. R. R. Transue, On the 2-homogeneity of Cartesian products, Fund. Math. 110 (1980), 131-134.
  25. W. D. Maurer, Conformal equivalence of countable dense sets, Proc. Amer. Math. Soc. 18 (1967), 269-270.
  26. Z. A. Melzak, Existence of certain analytic homeomorphisms, Canad. Math. Bull. 2 (1959), 71-75.
  27. M. Morayne, Measure preserving analytic diffeomorphisms of countable dense sets in Cn and n, Colloq. Math. 52 (1987), 93-98.
  28. B. H. Neumann and R. Rado, Monotone functions mapping the set of rational numbers onto itself, J. Austral. Math. Soc. 3 (1963), 282-287.
  29. J. W. Nienhuys and J. G. F. Thiemann, On the existence of entire functions mapping countable dense sets onto each other, Indag. Math. 38 (1976), 331-334.
  30. D. Ravdin, Various types of local homogeneity, Pacific J. Math. 50 (1974), 589-594.
  31. W. L. Saltsman, Some homogeneity problems in point set theory, Ph.D. thesis, Auburn University, 1989.
  32. D. Sato and S. Rankin, Entire functions mapping countable dense subsets of the reals onto each other monotonically, Bull. Austral. Math. Soc. 10 (1974), 67-70.
  33. P. Stäckel, Ueber arithmetische Eigenschaften analytischer Functionen, Math. Ann. 46 (1895), 513-520.
  34. J. Steprāns and S. Watson, Homeomorphisms of manifolds with prescribed behaviour on large dense sets, Bull. London Math. Soc. 19 (1987), 305-310.
  35. J. Steprāns and H. X. Zhou, Some results on CDH spaces - I, Topology Appl. 28 (1988), 147-154.
  36. E. Strauss, Problem 6, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Amer. Math. Soc., Providence, R.I., 1968, 534.
  37. G. S. Ungar, Countable dense homogeneity and n-homogeneity, Fund. Math. 99 (1978), 155-160.
  38. J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. Amer. Math. Soc. 84 (1982), 143-148.
  39. S. Watson, The homogeneity of small manifolds, Topology Proc. 13 (1990), 365-370.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm141/fm14121.pdf

Pages:
101-108
Main language of publication
English
Received
1989-02-20
Accepted
1991-06-03
Published
1992
Exact and natural sciences