ArticleOriginal scientific text

Title

Continuous-, derivative-, and differentiable-restrictions of measurable functions

Authors 1

Affiliations

  1. Division of Mathematics, Auburn University, Auburn, Alabama 36849-5310, U.S.A.

Abstract

We review the known facts and establish some new results concerning continuous-restrictions, derivative-restrictions, and differentiable-restrictions of Lebesgue measurable, universally measurable, and Marczewski measurable functions, as well as functions which have the Baire properties in the wide and restricted senses. We also discuss some known examples and present a number of new examples to show that the theorems are sharp.

Bibliography

  1. S. Agronsky, A. M. Bruckner, M. Laczkovich and D. Preiss, Convexity conditions and intersections with smooth functions, Trans. Amer. Math. Soc. 289 (1985), 659-677.
  2. H. Blumberg, New properties of all real functions, ibid. 24 (1922), 113-128.
  3. J. B. Brown, Differentiable restrictions of real functions, Proc. Amer. Math. Soc. 108 (1990), 391-398.
  4. J. B. Brown and K. Prikry, Variations on Lusin's theorem, Trans. Amer. Math. Soc. 302 (1987), 77-86.
  5. A. M. Bruckner, J. G. Ceder and M. L. Weiss, On the differentiability structure of real functions, ibid. 142 (1969), 1-13.
  6. J. Ceder, Some examples on continuous restrictions, Real Anal. Exchange 7 (1981/ 82), 155-162.
  7. F. Filipczak, Sur les fonctions continues relativement monotones, Fund. Math. 58 (1966), 75-87.
  8. V. Jarník, Sur les nombres dérivés approximatifs, ibid. 22 (1934), 4-16.
  9. C. Kuratowski, La propriété de Baire dans les espaces métriques, ibid. 16 (1930), 390-394.
  10. K. Kuratowski and A. Mostowski, Set Theory with an Introduction to Descriptive Set Theory, North-Holland, Amsterdam 1976.
  11. M. Laczkovich, Differentiable restrictions of continuous functions, Acta Math. Hungar. 44 (1984), 355-360.
  12. N. Lusin, Sur les propriétés des fonctions mesurables, C. R. Acad. Sci. Paris 154 (1912), 1688-1690.
  13. N. Lusin, Sur la recherche des fonctions primitives, ibid. 162 (1916), 975-978.
  14. E. Marczewski (Szpilrajn), Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm141/fm14116.pdf

Pages:
85-95
Main language of publication
English
Received
1991-06-28
Accepted
1991-11-05
Published
1992
Exact and natural sciences